
A Cross-Platform Open Source 3D Object
Reconstruction System using a Laser Line Projector

Vaibhav Bajpai and Vladislav Perelman
School of Engineering and Computer Science

Campus Ring 1, Jacobs University Bremen
{v.bajpai, v.perelman}@jacobs-university.de

Abstract—This paper introduces a cross-platform low-cost
system for 3D object reconstruction using a projection-based
laser scanner. It uses contact-free measurement techniques for 3D
object reconstruction and fast surface registration using Iterative
Closest Point (ICP) [1]. The only hardware requirements are a
simple hand-held laser line projector, a calibration rig and a
standard camera. The camera is initially calibrated using Zhang’s
camera calibration method so that its external and internal
parameters are known. The visible intersection with the known
background is used to find the 3D pose of the laser plane. This
laser plane is used to triangulate new 3D point coordinates of the
object’s surface. The point clouds obtained are processed using
the "3DTK - The 3D Toolkit" [2] which includes an automatic
high-accurate registration process and a fast 3D viewer.

I. INTRODUCTION

A projection of a real-world object to an image annihilates
its depth information from a geometric point of view. This is
because the 3D points in the same viewing direction inherently
yield a single 2D point in the image. 3D object scanning and
reconstruction is a technique to acquire enough information in
order to regenerate the 3D shape of such a real-world object.
This is achieved by taking multiple scans of the object from
different angles to subsequently register them in a common
coordinate system. The generated 3D models are widely used
for medical diagnosis, archaelogical analysis, industrial design
and production and in the entertainment industry.

3D scanning techniques can be broadly divided into two
categories depending on whether or not the scanning system
is in contact with the target object. The contact-free techniques
themselves can be either active or passive. Active contact-free
techniques emit a radiation to calculate the deviation from the
object, while passive techniques use the visible light itself for
such an estimation. The authors in [3] provide a solid review
of the most important 3D laser scanning methods developed
in the last 20 years.

This paper uses the active contact-free technique by using
a hand-held projector to emit a laser line. The recovery of
the object surface is done by triangulating the laser with the
rays that were projected back to the camera. We use the
real-time self-calibration approach [4] to eliminate the need
of an external sensor to track the position of the scanner.
The pipeline initially begins with the data acquisition using
an inexpensive web camera that captures multiple runs of a
laser sweeping across an object as shown in Fig. 1. Camera
calibration using a chessboard pattern is performed next,

Fig. 1. Data Acquisition Setup

that helps estimate the internal parameters of the camera to
establish a mapping between its natural units to the units in
the physical world. We also use the chessboard patterns as our
reference double-frames to calculate the extrinsic parameters
of the camera. These parameters are later used to calculate the
pose1 of the laser plane.

The quality of the final 3D shape depends largely on how
accurately the laser lines and the object points are identified.
We use a reference image without a laser line to calculate
an image difference with each frame of the laser sweeping the
object as used in [4]. The difference image is then smoothened
and filtered with a red color threshold to remove the outliers.
Hough transform on the result helps isolate the two laser lines
on each side of the object from the object points.

The extrinsic parameters of the camera calculated using
the chessboard patterns are used with the laser pixels from
the hough lines to calculate the laser plane equation. The
laser plane equation is finally intersected with the object
points to determine the 3D surface points (point cloud) of
the objects. The point clouds from each scan (with a different
orientation of the object) are registered using ICP [1]. We
use Simultaneous Localization and Mapping (SLAM) from
3D Toolkit (3DTK) [2] for automatic scan registration.

1combination of position and orientation

II. RELATED WORK

Stereophotogrammetry [5], [6] is a technique to generate 3D
models using a collection of complementary 2D images of an
object taken at different angles It uses perspective methods
and illumination rules to recover basic geometric models of
the photographed scenes. The hardware requirements of the
setup are usually two digital cameras, however the quality of
the digitized 3D models is generally low.

Structured Light is an active contact-free technique where
a known pattern is projected onto the surface and a separate
perspective is used to observe the resulting deformed pattern.
The 2D deformed image of the pattern acquired is used to
extract the 3D information of the surface. Microsoft Kinect 2

internally uses this technique to compute a depth of the object
by projecting an infrared laser. The major limitation of the
Kinect is its inability to work well in outdoor environments.

The time-of-flight scanning approach [7] is also an active
contact-free technique where the camera measures the round
trip time of the light from the object surface to determine its
distance. Such an approach can capture depth information over
a long-range and is fairly quick in operation. Unfortunately the
equipments are expensive and the accuracy is not high.

Contact-free triangulation based techniques to generate 3D
models of real-world objects have been known for more than
decade [8], [9]. The traditional systems however, use high-
precision expensive actuators for rotating/translating the laser
plane and the object. They also depend on external sensors to
track the position of the scanner.

The underpinnings of our 3D object reconstruction system
are largely inspired from The David Laser Scanner [4] project.
It is a software package that uses the triangulation technique,
however with a self-calibration method for the hand-held laser
plane to keep the cost to a minimum. It is a generalization
of [10] which instead uses four visual intersection points of
laser with a double reference frame to calibrate the laser. The
software package although originally free, is now available at
a price of e299. In addition, it can only run on Windows since
currently it is dependent on the .NET framework. We in this
paper present a free alternative to the David Laser Scanner. It
is written in C++ and is based on OpenCV and the "3DTK
- The 3D Toolkit" [2] making it widely-available as a cross-
platform solution.

III. APPROACH

The complete pipeline starting from capturing the video
of the laser sweeping across an object to the end result of
visualizing the 3D model of reconstructed point cloud is
primarily divided into five major steps as shown in Fig. 2.

A. Data Acquisition

We use an inexpensive web camera to capture multiple
runs of a hand-held laser sweeping across the object as
shown in Fig. 1. Since the videos are stored in a raw format
which cannot be directly processed by OpenCV [11], we use

2http://www.xbox.com/en-us/kinect

Camera Calibration

Intrinsic (Offline)

Extrinsic (Online)

Data Acquisition

Laser Identification

Point Cloud Generation Scan Registration

Fig. 2. Software Pipeline

mplayer to extract individual frames at the rate of 5 frames
per second.

$ mplayer -demuxer rawvideo \
-rawvideo fps=5:w=1600:h=1200:yuy2 \
-vo pnm:ppm $FILE

These frames are read into memory by calling the OpenCV
routine cvLoadImage() with a CV_LOAD_IMAGE_UNCHANGED
flag. The routine allocates an image data structure and returns
a pointer to a struct of type IplImage

B. Camera Calibration

The first step in the process of reconstructing the 3D
geometry of the object is to establish a mathematical rela-
tionship between the natural units of the camera with the
physical units of the 3D world. We use camera calibration
to estimate the internal parameters of the camera and its
distortion coefficients. The geometry is described in terms of
camera’s optical center and focal length of the camera.

Fig. 3. Calculating the Camera’s Intrinsic Parameters

We use OpenCV camera calibration routines and a planar
chessboard pattern as our calibration object. OpenCV uses
Zhang’s method [12] to calculate the focal lengths and offsets.

http://www.xbox.com/en-us/kinect

However it uses Brown’s method [13] to calculate the distor-
tion coefficients. The calibration pattern is rotated and trans-
lated to provide multiple views in order to get precise informa-
tion about the intrinsic parameters of the camera as shown in
Fig. 3. The OpenCV routine cvFindChessboardCorners()
is used to locate the corners and once we have enough corners
from multiple images, we use cvCalibrateCamera2() to get
the intrinsic matrix A as shown in Eq. 1.

s×

uv
1

 = A ·
[
R | T

]
·

xw
yw
zw
1

 (1)

where A =

fx 0 cx
0 fy cy
0 0 1

The intrinsic matrix A is later used to describe the pose

of the object being scanned by the laser relative to the
coordinate system of the camera. In order to determine this
pose on both sides of the target object, the patterns are
masked to allow individual calculation as shown in Fig. 4.
The parameters represented by

[
R | T

]
are then separately

calculated for both the sides by calling the OpenCV routine
cvFindExtrinsicCameraParams2(). R and T here refer to
the rotation matrix and the translation vector respectively.

(a) R1 | T1 (b) R2 | T2

Fig. 4. Calculating the Camera’s Extrinsic Parameters

C. Identification of 2D Laser Lines and Object Points

We use OpenCV routine cvAbsDiff() to calculate the
image difference of the laser image from the reference image
using Eq. 2. The resulted image difference is shown in Fig. 5

Z = X − Y (2)
where X is the laser image in figure 5(a) and

Y is the reference image in figure 5(b) and
Z is the difference image in figure 5(c)

To reduce the noise in the difference image, we use the
OpenCV routine cvSmooth() to convolve the image with a
Gaussian kernel function. It not only helps to remove the
camera artifacts but also reduces the information content in
the image. In order to remove all outliers and keep just the
pixels representing the red laser line, we use a pre-defined

(a) X (b) Y

(c) Z

Fig. 5. Using Image Difference to Find the Laser

threshold value for the intensity of the red pixels. In order to
restrict this thresholding only along the red channel, we use
cvSplit() to split the three-channel (R,G,B) difference image
into separate one-channel image planes. We use cvGet2D()
and cvSet2D() to work on the scalar values of the pixels.

We use the Probabilistic Progressive Hough Trans-
form (PPHT) [14], [15] using the OpenCV routine
cvHoughLines2() to detect the laser lines on both sides
of the target object. The line end points of each line thus
obtained are used to draw the line using cvLine() as shown
in Fig. 6. The difference image is initially passed through an
edge detection phase, since hough transform not only expects
a gray-scale image as input but the input is also treated
as binary information where the non-zero points are edge
points of the image. Therefore, we use the OpenCV routine
cvCvtColor to convert the RGB difference image to gray
scale and cvCanny() to perform the Canny Edge Detection
[16] before PPHT. The two hough line equations on either
side of the object are used to find the laser line points, while
the points not identified as part of the hough line are taken as
target object points.

(a) Before Transformation (b) After Transformation

Fig. 6. Hough Transformation

D. Point Cloud Generation

Fig. 7. Laser Triangulation [4]

The first step is to use the calculated camera extrinsics (R |
T) for each side of the target object along with the intrinsic
parameters (A) to transform each laser pixel (Pc) into 3D laser
surface points (Pw) using Eq. 3. The laser pixel points are
expressed in the homogenous coordinate system.

Pw = s ·R−1 ·A−1 · Pc︸ ︷︷ ︸
−→
b

−R−1 · T︸ ︷︷ ︸
−→a

(3)

where Pc =

uv
1

 ,−→a =

axay
az

 ,
−→
b =

bxby
bz

and s =

az
bz

Next, in order to bring all the laser surface points into a
common coordinate system, we transform all the 3D laser
points from the right side of the target object to the coordinate
system of the left side using Eq. 4

Pl = R−11 × Pr −R−11 T1 (4)

where Pr =
[
R2 | T2

]
× Pw

With all the 3D laser surface points in a common coordinate
system, we randomly choose 3 points to generate the laser
plane equation. Using the coefficients of this equation, we
define the normal to the plane (

−→
N) using Eq. 5.

Ex + Fy +Gz +H = 0 (5)

where
−→
N =

EF
G

The last step is to use the target object pixels (Pc) and

intersect them with the laser plane equation represented by
the normal (

−→
N) to obtain the 3D surface points of the target

object (Pw) as shown in Fig. 7 using Eq. 6

Pw = s×R−1 ×A−1 × Pc −R−1 × T (6)

where s =
−→
N ×−→a −D
−→
b ×
−→
N

and Pc =

uv
1

We also use the OpenCV routine cvGet2D() to retrieve

the RGB color information for each object pixel and map it to
the calculated corresponding 3D object surface point. We use
the reference image as the source for retrieving the original
color information since that image does not have a laser line
sweeping the target object.

E. Point Cloud Processing and Registration

We use ICP [1] to register the two point clouds from differ-
ent scans into a common coordinate system using Eq. 7. The
algorithm requires an initial starting guess of relative poses
(x, y, z, θx, θy, θz) to compute the rotation and translation to
fit the 3D geometrical models together. Since our system did
not have an odometer, we set the initial pose to 0 and let it
extrapolate further.

E(R, t) =

Nm∑
i=1

Nd∑
j=1

wi,j‖mi − (Rdj + t)‖2

where Nm = number of points in model set M
Nd = number of points in data set D
wi,j = 1, if mi is closest to dj
wi,j = 0, otherwise (7)

We use 6D SLAM from 3DTK [2] for automatic scan
registration that uses cached kd-trees for fast iterative ICP
match [17]. The slam6D component produces a frames file
that is used by the show component to visualize the 3D model
of the target object along with its color information.

IV. EXPERIMENTAL RESULTS

The imaging system in addition to the source directory, ex-
pects a reference image without the laser stripe and two images
of the individual background patterns used for calibration as
input. The program saves the point cloud thus obtained in a
destination directory which is used by the 3DTK components
for processing and visualization. The results obtained from the
show program are shown in Fig. 8.

A discernible amount of noise is evident in the final result.
However, considering the quality and the price of the hardware
used for the data acquisition these results can be deemed
satisfactory. The gaps in the point cloud are due to the fast
movement of the laser ray over the object. They can be
overcome by reducing the speed of the laser and thereby
producing larger number of image frames. The final step of
the software pipeline, namely scan registration using the ICP
method did not yield good results. One possible explanation is
that the rotation angle between the two points from different
scans turned out to be too large making it hard for the SLAM
component in 3DTK to converge.

Fig. 8. Results

V. FUTURE WORK AND CONCLUSION

The process of data acquisition, point cloud generation and
scan registrations are currently performed offline. A foresee-
able future work item is to make it real time to allow the
results to be viewed as they are being processed. It will
allow the user to not only adjust the speed of laser sweep,
but also get immediate feedback on the frequency of swipes
required to avoid any gaps in the final 3D model. In addition
to the implementation, a performance evaluation with a larger
dataset and a study comparing the results with the David Laser
Scanner also needs to be done.

We presented our implementation of a 3D object recon-
struction system using a hand-held laser line projector and
a web camera. This work provides a free, open-source, and
cross-platform alternative to the David Laser Scanner. It uses
contact-free triangulation with self-calibration of the laser
plane to generate the 3D object surface points. The point
clouds obtained from each scan are registered using SLAM
from 3DTK and viewed using its fast viewer.

REFERENCES

[1] Besl, P., McKay, H.: A Method for Registration of 3-D Shapes. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 14(2) (feb
1992) 239 –256

[2] Automation Group (Jacobs University Bremen) and Knowledge-Based
Systems Group (University of Osnabrück): 3DTK - The 3D Toolkit.
http://slam6d.sourceforge.net/ [Online; accessed 6-May-2012].

[3] Canada, C., F, B.: Review of 20 Years of Range Sensor Development
* (2004)

[4] Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-Cost Laser Range
Scanner and Fast Surface Registration Approach. In: Proceedings of the
28th conference on Pattern Recognition. DAGM’06, Berlin, Heidelberg,
Springer-Verlag (2006) 718–728

[5] Li, Y., Shum, H.Y., Tang, C.K., Szeliski, R.: Stereo reconstruction from
multiperspective panoramas. IEEE Trans. Pattern Anal. Mach. Intell.
26(1) (January 2004) 45–62

[6] Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architec-
ture from photographs: a hybrid geometry- and image-based approach.
In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’96, New York, NY, USA, ACM
(1996) 11–20

[7] Nielsen, T., Bormann, F., Wolbeck, S., Spiecker, H., Burrows, M.D.,
Andresen, P.: Time-of-flight analysis of light pulses with a temporal
resolution of 100 ps. Review of Scientific Instruments 67(5) (1996)
1721–1724

[8] Beraldin, J.A., Blais, F., Cournoyer, L., Rioux, M., El-Hakim, S.,
Rodella, R., Bernier, F., Harrison, N.: Digital 3d imaging system for
rapid response on remote sites. In: 3-D Digital Imaging and Modeling,
1999. Proceedings. Second International Conference on. (1999) 34 –43

[9] Andreetto, M., Brusco, N., Cortelazzo, G.: Automatic 3d modeling of
textured cultural heritage objects. Image Processing, IEEE Transactions
on 13(3) (march 2004) 354 –369

[10] Zagorchev, L., Goshtasby, A.: A paintbrush laser range scanner. Comput.
Vis. Image Underst. 101(2) (February 2006) 65–86

[11] Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the
OpenCV Library. Software that sees. O’Reilly (2008)

[12] Zhang, Z.: A Flexible New Technique for Camera Calibration. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22(11) (nov
2000) 1330 – 1334

[13] Brown, D.C.: Close-Range Camera Calibration. Photogrammetric
Engineering 37(8) (1971) 855–866

[14] Kiryati, N., Eldar, Y., Bruckstein, A.M.: A Probabilistic Hough Trans-
form. Pattern Recogn. 24(4) (February 1991) 303–316

[15] Matas, J., Galambos, C., Kittler, J.: Robust Detection of Lines using
the Progressive Probabilistic Hough Transform. Comput. Vis. Image
Underst. 78(1) (April 2000) 119–137

[16] Canny, J.: A Computational Approach to Edge Detection. IEEE Trans.
Pattern Anal. Mach. Intell. 8(6) (June 1986) 679–698

[17] Nuchter, A., Lingemann, K., Hertzberg, J.: Cached k-d Tree Search for
ICP Algorithms. In: Proceedings of the Sixth International Conference
on 3-D Digital Imaging and Modeling. 3DIM ’07, Washington, DC,
USA, IEEE Computer Society (2007) 419–426

http://slam6d.sourceforge.net/

	Introduction
	Related Work
	Approach
	Data Acquisition
	Camera Calibration
	Identification of 2D Laser Lines and Object Points
	Point Cloud Generation
	Point Cloud Processing and Registration

	Experimental Results
	Future Work and Conclusion
	References

