
Design and Prototype Implementation of the WattsApp Telemetry Platform

Vaibhav Bajpai, Vitali Bashko, Catalin David, Siarhei Kuryla, Vladislav Perelman, Johannes Schauer,
Nikolay Melnikov, Anuj Sehgal, Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
{v.bajpai, v.bashko, c.david, s.kuryla, v.perelman, j.schauer,
n.melnikov, s.anuj, j.schoenwaelder}@jacobs-university.de

Abstract—Telemetry is an important function of the Internet
of Things as it is being developed and deployed today. Of
particular interest within this area are energy monitoring
services. In this paper we describe WattsApp, a social teleme-
try gathering and comparison platform, which was built as
a demonstrator that integrates technologies from embedded
systems to mobile applications. We used the SNMP protocol
stack developed for the Contiki embedded operating system to
retrieve telemetry information from a hardware interface that
reads data from S0 meters (e.g., power meters, fluid meters).
A web interface and an Android mobile application lets users
view this data. To ensure privacy of users’ data, it is only stored
at users’ own premises and all communication takes place over
encrypted connections. This paper provides an overview of the
implementation of WattsApp.

I. INTRODUCTION

The emergence of embedded computing devices capable
of wireless communications is leading to the emergence
of an Internet of Things (IoT). The availability of net-
work computing devices capable of performing limited tasks
themselves opens up opportunities to develop multiple new
applications in various fields. From home automation to an
energy balanced smart grid for electricity generation and
distribution, the IoT is expected to introduce a plethora of
new computing services that rely on integrating existing
software services on the Internet with the control and data-
gathering capabilities of embedded devices.

However, since most embedded devices to be used in
the IoT do not use an IEEE 802.11 WiFi interface [1],
interconnecting them with the existing Internet infrastructure
requires the development of protocols and systems that take
into account the low-power and lossy radio standards cur-
rently used in embedded wireless sensor networks. To avoid
the emergence of devices that are neither interoperable nor
documented, the IETF developed the 6LoWPAN standard
[2], [3] to enable IPv6 networking over the IEEE 802.15.4
radio standard, which is commonly used in embedded net-
works [4].

Using IoT technologies, like 6LoWPAN, and integrating
them with well established Internet and mobile application
services, WattsApp was built as a technology demonstrator
to showcase a typical application of the IoT. Development
was completed within a short time-frame of approximately
one month within the framework of a graduate networking

Data$Collector$

Cloud$Server$

Meter$

Data$Collector$

Meter$ Meter$ Meter$

Website$ Cellphone$

N
a8

ve
$IP
v6
$N
et
w
or
k$

m
DN

S,
$H
TT
P$
(JS

O
N
)$

Re
so
ur
ce
$

$C
on

st
ra
in
ed

$
6L
oW

PA
N
,$R

PL
$

m
DN

S,
$S
N
M
P$

Figure 1. An overview of the WattsApp architecture. The meters and
data collectors typically function within a resource constrained network,
whereas all other components are based in traditional IP networks.

lab course. The WattsApp telemetry platform integrates
embedded hardware with standard network management
protocols, like SNMP, and allows users to view telemetry
(e.g. energy, water or gas consumption) and share it using
the Facebook social network. Multicast-DNS (mDNS) pro-
vides for automatic discovery of services (meters and data-
collectors) offered within a network.

The following sections of this paper present an overview
on the design of WattsApp along with a short discussion
on related work. Starting from the architecture described
in Section 2, we discuss the hardware interface (Section
3), the polling and storage components (Section 4), the
gatekeeper located on the cloud server (Section 5) and the
user interfaces (Section 6). Related work is discussed in
Section 7, before we conclude the paper.

II. ARCHITECTURE AND APPLICATION OVERVIEW

The WattsApp telemetry platform is designed to collect
and report time-series data from different sources. Data such
as power consumption can be collected using embedded
sensors or external meters attached to IPv6 enabled sensor
boards.

An overview of the WattsApp architecture can be seen
in Figure 1. Our implementation integrates a native IPv6
network with an 802.15.4 resource constrained network.
Within the resource constrained network, meters measure

power consumption. Each meter uses the Contiki operating
system [5] running on an Atmel AVR Raven platform and
has the ENTITY-MIB [6] and ENTITY-SENSOR-MIB [7]
implemented within the Contiki SNMP agent [8]. These
meters are able to interface with different data reporting
devices using appropriate hardware interfaces. We designed
an electricity consumption meter based on the S0-Interface
[9], however, the versatility of the S0-interface makes it easy
to make hardware interfaces for water or gas consumption
as well. In our setup, the data collectors deployed at users’
premises to retrieve the data collected from the S0-interface
circuit using SNMP.

The data collector communicates with the WattsApp
server, i.e. the gatekeeper located at the cloud server (in
Figure 1) using encrypted RESTful HTTP requests using
the JSON data format. The cloud server is used for authen-
tication and access control. It also acts as an intermediary
between front-end clients and the data collectors/meters. A
website and an Android OS mobile application are the front-
ends which retrieve and display metered data using requests
to the cloud server.

The aim of developing WattsApp was to demonstrate the
integration of multiple Internet technologies, from native
IPv6 and resource constrained networks to mobile and
web-based applications, into a single system by using pre-
existing tools. Specifically, the demonstrator was designed
as a student project for the Advanced Distributed Systems
Lab1 graduate course within a period of about one-and-half
months. Given more time, the system could likely have been
designed to provide better performance, however, by using
mostly pre-existing tools it became clear that it is possible
to rapidly develop a stable IPv6 capable system.

Furthermore, since each meter device is capable of being
assigned a globally routable IPv6 address, it can be reasoned
that any device, mobile or otherwise, could directly com-
municate with them. Reusing protocols such as SNMP for
management and monitoring of these devices then presents
a great advantage because a number of existing tools (e.g.
graphing tools like Cacti) can be used without adaptation.

III. HARDWARE INTERFACE

Since WattsApp is a telemetry platform, gathering data is
one of the most important tasks. Since the IoT is expected to
be an enabling technology for smart-grids, designing meters
capable of measuring energy, water and gas consumption
was deemed important for the demonstrator. Not only was it
necessary to build the hardware to gather this information,
but ensuring that this information could be accessed in an
Internet standards compliant way was also important.

The following sub-sections present the design of the
metering hardware, along with information on the interface
that allows retrieval of this data over SNMP.

1http://cnds.eecs.jacobs-university.de/courses/adsl-2011/

A. S0 Pulse Counter Circuit

High power AC-current circuits and digital circuits nor-
mally do not mix very well due to the high differences in
the voltage and currents involved in such systems. As such,
in order to measure electricity consumption, with the ability
to transfer this information into digital systems poses some
challenges. Furthermore, since the aim of WattsApp was
not only to monitor electricity consumption, but also other
utilities like water and gas, it was important to choose a
metering method that enables recording consumption values
for all these utilities.

The S0-interface was chosen for this purpose since there
are many meters capable of measuring electricity, gas and
water consumption based on this system. The S0-interface
is a pulse-modulation system that, unlike digital systems,
is based on current rather than voltage modulation. An S0
meter takes in a DC voltage between 12-27V as power
supply and causes the current across the output lines to rise
up between 10-27mA, once a cumulative load of a certain
value is achieved. For example, the S0 electricity meter we
use causes a current pulse between 10-27mA once 1 kWh
of energy has been consumed.

While counting these current pulses gives us a method of
calculating the amount of energy consumed over a certain
time period, digital systems are not capable of directly
measuring current, and as a consequence current pulses.
Digital systems normally work by equating 5V to a digital 1
(on) and 0V to a digital 0 (off). As such, pulse-modulation
in digital systems normally works by measuring a voltage
of 5V as on and 0V as off. This necessitates a method of
converting the S0 current pulses to digital voltage pulses. We
achieved this conversion by building an interface circuit, the
schematic for which can be seen in Figure 2.

Since the S0 meters operate at voltages between 12-27V it
is important to ensure that this voltage does not leak into the
digital part of the circuit, which operates at 5V. As such, we
use a digital optocoupler device which takes the output from
the S0 meter. Each time the S0 meter outputs an ON pulse of
10-27mA current, an LED within the optocoupler turns on
and allows for the digital circuit to turn on as well. Not only
does this ensure that higher voltages are never leaked into the
5V digital circuit, but it also converts a current pulse into a
digital voltage pulse. These digital voltage pulses may now
be counted and aggregated to obtain consumption values
over time.

B. AVR Raven Contiki SNMP Interface

Once the output from the S0 meters is available in digital
form, this must be aggregated and a method provided for
it to be retrieved via a network. Since the aim was to
integrate everything using IPv6, this retrieval must happen
using Internet standard technologies and the meters must
be reachable via IPv6. To accomplish this, the AVR Raven
hardware platform was chosen since it is capable of running

Figure 2. A circuit diagram showing the S0-interface circuit that converts S0 current pulses to digital voltage pulses. The HCPL2612 digital optocoupler
is used to isolate the high voltage and current circuit from the digital part. When the S0 circuit causes a high current pulse, the HCPL2612 allows a 5V
circuit to be completed, thereby causing a voltage pulse that can be counted. The L7805CV voltage regulator is used to ensure a clean and stable 5V
digital signal.

the Contiki OS, which brings IPv6 networking to embedded
devices. Furthermore, since a SNMP agent is available for
Contiki, the telemetry can be retrieved using an implemen-
tation of the ENTITY-MIB and ENTITY-SENSOR-MIB.

To retrieve consumption values from the S0-interface
circuit, described in the previous sub-section, the output of
the interface circuit was connected to a digital-input line
on the AVR Raven. A driver for the AVR platform, which
caught an interrupt each time a voltage of 5V was observed
on the connected digital-input line, was written. This made
it easy to count energy consumption since each time the
interrupt occurred, in case of our meter it meant that 1
kWh of energy had been consumed. This data is aggregated
by the AVR Raven and can be retrieved using SNMP. A
poller script, described in greater detail in following sections,
running on data-collectors retrieves this data and stores it in
a SQLite database.

It is important to note that the stability of this system has
been excellent. Ever since the system went online in late Oc-
tober, the only downtime that was encountered was when the
coffee-machine being monitored was removed for cleaning,
prompting the University cleaning-crew to also disconnect
our meter. However, this was also quickly recovered from
since reconnecting the system was not difficult. An overview
of the complete metering solution can be seen in Figure 3.

IV. POLLING AND STORING

Since the meters integrated with WattsApp can provide
telemetry in many different units and formats, the polling
script is responsible for making any device specific adapta-
tions before storing the data in the database. This data is then

relayed to the clients by a collector service, via a gatekeeper
running as web-service on the cloud server. This section
provides an insight into the poller and collector services of
WattsApp.

A. The Polling Script

The poller is responsible for collecting data from the
IPv6-enabled meters in order to store it into a database.
Since interfacing to devices often requires device specific
adaptations, we decided to write the polling engine in the
Python language. While Python in general is a perfect fit
for these kind of tasks, we were surprised that we could
not find a single packaged SNMP extension for Python that
supported IPv6 well.

As such, we ended up using a wrapper around the NET-
SNMP tools in order to fetch data. Furthermore, we learned
quickly that the poller needs to be resilient to all sorts of
failures. In particular, we occasionally experience 802.15.4
failures exceeding the retransmissions we do. Furthermore,
data storage can fail, in particular during times of develop-
ment or software updates. The originally rather short script
did grow into a script defining a class Snmp wrapping the
NET-SNMP snmpget command, a class Meter modeling
a single meter (e.g., a temperature meter or an energy meter),
and a class Exporter modeling an exporter providing
access to several meters.

A discovery method detects meters at startup and assigns
UUIDs to them as needed. The script is capable of detecting
discontinuities and taking appropriate actions. During the
development phase, Python’s flexible logging API helped a
lot since it allowed us to get notified about failures via Email,

Lorem Ipsum

Motivation
Telemetry is an important function of the Internet of Things as it is
being developed and deployed today. Of particular interest are
energy monitors but also health monitors for elderly people or even
monitors for leisure activities such as sports monitors for runners.
Remote monitoring has been a prime application domain of the
SNMP protocol and there are currently activities underway to
standardize energy monitoring data models.

We provide the first production ready open source SNMP stack for
Contiki, a popular operating system for constrained devices in
IPv6/802.15.4 networks. We have developed basic instrumentation
to read network statistics, to export information about the RPL
routing protocol and to export sensor readings using existing
standardized models. By using an SNMP stack, devices of the
Internet of Things easily integrate into existing monitoring solutions.
Furthermore, by using SNMP, new Internet of Things applications
can easily interface with existing hardware components (e.g., UPS
devices or smart power distribution units for data centers that come
with Ethernet interfaces and embedded SNMP agents).

Contributors
- Siarhei Kuryla
- Catalin David, Johannes Schauer
- Vitali Bashko. Vladislav Perelman
- Vaibhav Bajpai. Mihaela Rusu,
- Nikolay Melnikov. Anuj Sehgal
- Jürgen Schönwälder

 Component Hardware OS Language/Tools

 WattsExport

 WattsPoll

 WattsCollect

 WattsCloud

 WattsApp

AVR Raven Contiki C, Contiki SNMP

PC Ubuntu Python, SQLite

PC Ubuntu JavaScript, Node.js, SQLite

 Xen VM Debian PHP, MySQL, jQuery, Facebook SDK

Smartphone Android Java, Android SDK, Facebook SDK

Blueprint

https://www.wattsapp.net/

The setup shows an S0 device that measures the power
consumption of the electrical equipment connected to it. We have
designed a custom circuit that pulls measurements from the S0
device and sends them to the AVR Raven. The Raven converts
pulses into equivalent kWh of power consumed and transfers this
information via IPv6 to the collector that queries for it using SNMP.

S0#Meter# S0#Interface#Circuit# AVR#Raven#

Figure 3. The S0 interface for the electricity meter along with the AVR
Raven based data exporting device. The S0 interface converts the S0 current
pulses into digital voltage pulses, which are logged via interrupts in the
AVR Raven in order to count energy consumption and export this data to
a collector via a poller script.

something invaluable since many problems occur at unfore-
seen times of the day. There are still many improvements
possible put perhaps it is also time to consider the adoption
of polling engines of applications like Nagios2 or Cacti3 that
already incorporate many more advanced features.

B. The Collector

The WattsApp Collector was chosen to be written in
Node.js [10], which is an event driven, asynchronous I/O
JavaScript environment based on Google’s libv8 JavaScript
engine. This choice was made, since the event-driven nature
of Node.js allowed concurrent processing of requests without
the drawbacks of adding complexity that comes with a
multithreaded approach.

The WattsApp Collector allows clients to query for meter
data via HTTP. It advertises its service upon startup via
an mDNS advertisement so that any clients in the local
network can discover the collector and retrieve data from it,
if they are authorized to do so. All data transfer between the
collector and clients is encrypted using the built-in Node.js
TLS library and authentication of clients is done using X.509
certificates. If an unauthorized client tries to connect to the
WattsApp Collector or a connection without TLS is initiated,
an error message is returned to the initiator.

After successful authentication, a client can send HTTP
GET requests to the collector and receive data in JSON
format. If a valid query is received by the collector, it
responds with the appropriate JSON message by retrieving
data from the SQLite database into which the poller writes
data collected from the meters. Functionality exposed by
the Collector to authorized clients includes listing of all

2http://www.nagios.org
3http://www.cacti.net/

What is WattsApp?
WattsApp is a telemetry platform that demonstrates remote
monitoring of sensor readings using our state of the art Contiki
SNMP implementation. It consists of a hardware interface to read
data from S0 metering interfaces that is connected to an exporter
running Contiki SNMP. A data collector is collecting meter readings
and interfacing to a cloud server. The cloud server provides user
authentication (via Facebook) and interfaces with a web front end
and an Android application. All components of the Contiki SNMP
telemetry application communicate via IPv6.

The WattsApp telemetry application demonstrates that IPv6 is ready
to build and deploy complete state of the art applications. Tunneling
solutions like Teredo allow everyone to get easily connected to the
IPv6 Internet and to interface with WattsApp.

Learn more at: www.wattsapp.net

The graph shows the live power consumption (top) of the fridge and the
coffee machine connected to our WattsBox through the S0 bus and
the signal strength (bottom) of the AVR Raven running our state of the
art SNMP engine. The WattsBox reads the S0 pulses and reports them
to the AVR Raven running our Contiki SNMP stack, which pushes the
data to the collector and is later fetched by the Cloud. The data can be
viewed by authorized users on their Android WattsApp app,
www.wattsapp.net website or shared through Facebook.

Coffee

Fridge

Teapot

Figure 4. A typical graph output on the website client interface. This graph
plots the power consumption obtained from a single meter connected to an
exporter named Wattsbox. Annotations can be added to these graphs and
it can also be shared on Facebook.

meters, showing meter details, blacklisting and renaming
meters and setting the physical location of meters. The GET
query allows the client to specify the meter for which data
should be returned along with the time interval that data is
requested for.

Collectors are located within a users’ premises since this
is the data aggregation point. Not only does this encourage
data privacy, since it is not located in a central location, but
also limits the chances of unauthorized access since only
clients for which the user installs a X.509 certificate are
permitted to communicate with it.

V. THE GATEKEEPER - CLOUD SERVER

The gatekeeper web service, which resides on the cloud
server (as in Figure 1) performs the function of authen-
ticating users and performing access control to data from
collectors. This service is written in PHP using the Vanilla
MVC Framework. Once a user is successfully authenticated
by using the Facebook single-sign-on, it provides both the
user interfaces (web and android) application with meter data
through a RESTful interface. To perform the authentication,
the user interfaces provide the gatekeeper with the token and
email address that Facebook returns to the application once
an authentication, directly with Facebook, is completed. The
gatekeeper then uses this token to check with Facebook
whether the email address supplied with the token matches
the user requesting access and what permission levels are as-
sociated with that user, i.e. which meters the user has access
to and whether these can be edited as an administrator.

The meter data can be filtered and requested along a
particular time frame. The queries to rename or change
the location of a meter from either of the interfaces are
also managed through the gatekeeper. The gatekeeper in
itself, for privacy reasons, does not store any data which
it passes to the user interfaces, but is meant to keep the user
authentication and authorization centralized and simplistic.
All data exchanges between the user interfaces and the

What is WattsApp?
WattsApp is a telemetry platform that demonstrates remote
monitoring of sensor readings using our state of the art Contiki
SNMP implementation. It consists of a hardware interface to read
data from S0 metering interfaces that is connected to an exporter
running Contiki SNMP. A data collector is collecting meter readings
and interfacing to a cloud server. The cloud server provides user
authentication (via Facebook) and interfaces with a web front end
and an Android application. All components of the Contiki SNMP
telemetry application communicate via IPv6.

The WattsApp telemetry application demonstrates that IPv6 is ready
to build and deploy complete state of the art applications. Tunneling
solutions like Teredo allow everyone to get easily connected to the
IPv6 Internet and to interface with WattsApp.

Learn more at: www.wattsapp.net

The graph shows the live power consumption (top) of the fridge and the
coffee machine connected to our WattsBox through the S0 bus and
the signal strength (bottom) of the AVR Raven running our state of the
art SNMP engine. The WattsBox reads the S0 pulses and reports them
to the AVR Raven running our Contiki SNMP stack, which pushes the
data to the collector and is later fetched by the Cloud. The data can be
viewed by authorized users on their Android WattsApp app,
www.wattsapp.net website or shared through Facebook.

Coffee

Fridge

Teapot

Figure 5. A typical graph output on the website client interface. Instead
of energy consumption this graph plots the radio signal strength of the
connection to an exporter named Wattsbox. Annotations can be added to
these graphs and it can also be shared on Facebook.

gatekeeper web-service take place using the JSON data
format.

VI. USER INTERFACES

The visualization and interaction of the meter readings
is possible either using our standalone website or through
a freely available Android application. The web application
serves two purposes; firstly, it is meant to provide a lowest
common denominator for all users and to be the most power-
ful platform to deliver the richest experience in energy usage
visualization. On the other hand, the mobile application is
meant to provide data to users on the move.

A. Web Application

The web application4 provides a simple platform for a
user to view the usage of the energy meters. The web
application uses Facebook’s Javascript SDK 5 to provide
single sign-on using OAuth 2.0 [11]. Once logged in, the
user can view the list of the collectors he can administer or
has been given permission to view the data from. A similar
layout is available for the list of meters as well.

The collectors and their associated meters have their
locations pinned on a google map using the Google Maps
API. The energy usage can be visualized using either tree
maps or line charts. Tree maps can be used to relatively
compare and contrast the energy usage of the meters, which
provide data in the directly comparable units. This display
is similar to the one found in our Android application, as
shown in Figure 6. A thorough analysis of the energy usage
of a particular meter is also possible. For instance, the graph
in Figure 4 shows the visualization of our energy meter
that measures the power consumption of the fridge and the
coffee machine connected in our office. Similarly, the signal
strength of the AVR Raven that exports this energy usage

4http://www.wattsapp.net
5https://developers.facebook.com/docs/reference/javascript/

Figure 4: Left: Navigation Mode to find the location for the device. Right: Selection Mode to pin
down the location.

changes made instead of saving the data by pressing the cancel button.
When viewing the meters, the user can select any subset of them by selecting appropriate checkboxes.

He can then press the Menu button on the phone and choose one of the options presented. If the list
was previously filtered by Units such that only meters of one Unit are shown, then the user has two
options – he can either generate a Treemap (Figure 5) that will show the relative consumption of the
meters selected over a certain period of time, or create a graph of consumption over a period of time
(Figure 6). The Treemap option is available only when selecting meters of the same unit due to the
fact that meters of di↵erent units can produce data on a completely di↵erent scale, hence showing
their relative relationship to each other would be useless.
In both Treemap view and Graph view the user can change the time interval over which the informa-

tion is displayed. He can do that either by the means of a spinning control (as shown on the Graph
view) using which one can select certain time intervals to look back in the past for. For example, the
user might want to view the information over the past month, or past week or past year. Another
option is for the user to set a custom time interval using the calendar selector (shown on the Treemap

Figure 5: Treemap of three meters.

3

Figure 6. The treemap view, as shown by the Android application.
Data returned from meters, which have directly comparable units, can be
displayed in this view in order to get a quick overview of the energy
consumption relationship between meters or devices.

is shown in Figure 5. The website is built using the jQuery
framework [12].

B. Android Application

To give mobile users an opportunity to gather an insight
into their telemetry data, a mobile application for Android
was developed as a client for WattsApp. This mobile appli-
cation provides a simple and intuitive way of viewing data
(power consumption, water consumption, etc.) that is passed
to it, as well as of modifying information related to meters
that collect data. This application has been made available
in the Google Play store.

The WattsApp application uses Facebook credentials in
order to authenticate itself with the server that provides the
data. It also uses a single sign-on feature so that if the
smartphone has a Facebook application installed and the
user is logged into it, signing into the WattsApp happens
automatically. Otherwise, when the application is launched
the first time, a Facebook login screen is presented to the
user. Once the user provides credentials and is successfully
logged in, appropriate permissions needed by the application
(access to the e-mail address of the user) must be accepted.
After successful authentication the application stores the
Facebook access token, the user ID and the time for which
the token is valid since this data is used to support the Single
Sign-On feature.

Authentication and permission levels are retrieved from
the WattsApp server, i.e. the gatekeeper at the cloud server,
by supplying to it the user ID for which the token was
obtained. Since the WattsApp server has access to the token
and user ID information as well, a successful match can
be used to confirm the users’ identity. Following this, the
WattsApp server looks up the list of collectors a user has
access to (including administrator privileges) and returns
this data to the mobile application. The user can filter the
meters by their units as well as the collectors which the

Figure 6: Graph of energy consumption of one of our meters.

view), in which a start date and an end date can be explicitly set. Switching between a Spinner and
a Calendar selector can be done through the Settings page (Figure 7) which can be accessed either
from the main menu of the application, or by choosing Settings after clicking on the Menu button of
the phone when viewing a generated Treemap or a Graph. Moreover, after the user decided to view
the Treemap of certain meters he is able to click on the tiles of the Treemap to select a subset of those
meters; this subset can then be graphed by pressing on Show Graph in the options menu.

Figure 7: Setting page where the user can change the way to select the time interval as well as the
default time interval.

One more feature WattsApp provides is the ability to search for the collectors in the local network
by the means of multicast DNS. From the main menu user can select Nearby Collectors which will
open a new view where all Collectors that have advertised themselves on the local network will show
up. After that user can check whether he has permissions to access a certain collector and if so view
its meters, otherwise the user can request such permissions by providing some justification which will
be shown to the owner of the collector.

4

Figure 7. The detailed graph mode, as shown by the Android application.
Data displayed in this view can provide deeper insights into the energy
consumption patterns.

meters are associated with. In case a user has full read-
write permissions on a particular meter, an edit button is
presented in front of the appropriate meter. Pressing the edit
button displays a meter configuration page, where the user
can rename a meter or manually set its new location.

A user may select multiple meters to display the data
from by selecting the check boxes next to each meter. Data
from meters can be displayed in two modes - Treemap or
Graphical plot. In the Treemap mode only the information
obtained from the devices that measure comparable data
(i.e. has the same measurement units) can be viewed. The
Treemap display, shown in Figure 6, is useful to observe
the relative relationship at a glance. For further insight, the
user can tap on meters in the Treemap display and choose to
graph these, as shown in Figure 7. The graphing capability
was added using the Achartengine API6, which is distributed
under the Apache 2.0 license. The user can select the time
period for which the data is plotted by either using a calendar
to pick the exact time frame, or using a rotating picker that
allow picking between pre-set options (e.g. one-month, one-
week, etc.).

One more feature WattsApp provides is the ability to
search for the collectors in the local network by the means
of mDNS. Our original intention was to use the jMDNS li-
brary7 for this purpose, the most popular open-source mDNS
Java solution. However, when IPv6 was used, we faced
difficulties with running it on the Android devices. There-
fore, we decided to make use of the standard java.net
package in order to join the IPv6 multicast group and listen
to the advertisements sent out by the collectors on the local
network.

VII. RELATED WORK

The IETF EMAN working group is currently defining
a set of MIB modules for power and energy management

6http://www.achartengine.org/
7http://jmdns.sourceforge.net/

of devices and for monitoring batteries. While these MIB
modules will provide a much more detailed approach to
monitor and manage so called energy objects, it was for
us sufficient to utilize the existing ENTITY-SENSOR-MIB
[7].

The S0 interface [9] used by our meters is a very
simplistic interface since it only defines pulses and it does
not entail any data communication. As such, S0 is a very
cheap solution for small installations but lacks in providing
further details about what S0 pulses represent, nor is there
information about quality aspects of the power consumed.
More advanced meters make use of the MODBUS protocol
[13], which can run over serial lines but also over TCP
connections. MODBUS provides much more functionality
but also requires more logic inside of the meters, hence im-
pacting the price of the meters. Given our system design, we
would interface MODBUS devices, in particular MODBUS
over TCP capable devices, directly with the collector instead
of using a wireless sensor mode between the meter and the
collector.

VIII. CONCLUSION

Given the short time frame of just over one month to
take WattsApp from inception to completion, a fully working
system capable of delivering energy usage data to the user is
a positive outcome. Adoption of the S0 interface ensures that
WattsApp can be used to track utilities, beyond electricity,
like gas and water as well. However, the ability to compare
data between different types, e.g. temperature and electricity
consumption, makes WattsApp an interesting tool suitable
for demonstration of the capabilities of the IoT. The success-
ful integration of multiple technologies within WattsApp, at
a rapid pace, is proof that enough tools exist to develop
distributed applications using IPv6 for all communication
between the components.

Given the seeming popularity of S0 meters, we were sur-
prised that digital interface circuitry for these was not easily
available. The only products were USB interfaces, which
worked with proprietary data formats and applications. A
lack of open and non-proprietary interface devices prompted
us to design our own S0 interface circuit.

Due to the short development time, certain design deci-
sions made can be changed to improve user experience. For
example, currently the gatekeeper acts as a broker for all
data exchange between the user interfaces and collectors.
However, removing the gatekeeper from the data-path could
considerably improve latency issues.

It is also interesting to note that this student project has
had over 1000 downloads of its mobile app, and we have
recorded over 700 registered users on our web application.
This can possibly indicate a high interest in such energy
monitoring applications.

REFERENCES

[1] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett,
E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes, N. Finne,
and A. Dunkels, “Making Sensor Networks IPv6 Ready,” in
Proceedings of the Sixth ACM Conference on Networked Em-
bedded Sensor Systems (ACM SenSys 2008), poster session,
Raleigh, North Carolina, USA, November 2008.

[2] J. Hui and P. Thubert, “Compression Format for IPv6 Data-
grams over IEEE 802.15.4-Based Networks,” IETF RFC
6282, September 2011.

[3] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of IPv6 Packets over IEEE 802.15.4 Net-
works,” IETF RFC 4944, September 2007.

[4] N. Kushalnagar, G. Montenegro, and C. Schumacher., “IPv6
over Low-Power Wireless Personal Area Networks (6LoW-
PANs): Overview, Assumptions, Problem Statement and
Goals,” IETF RFC 4919, August 2007.

[5] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A
Lightweight and Flexible Operating System for Tiny Net-
worked Sensors,” in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, ser.
LCN ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 455–462.

[6] A. Bierman and K. McCloghrie, “Entity MIB (Version 3),”
IETF RFC 4133, August 2005.

[7] A. Bierman, D. Romascanu, and K. Norseth, “Entity Sensor
Management Information Base,” IETF RFC 3433, December
2002.

[8] S. Kuryla and J. Schönwälder, “Evaluation of the Resource
Requirements of SNMP Agents on Constrained Devices,” in
5th Conference on Autonomous Infrastructure, Management
and Security (AIMS 2011), Springer LNCS 6734, June 2011.

[9] IEC International Standard, “Electricity metering equipment
(a.c.) - Particular requirements - Part 31: Pulse output devices
for electromechanical and electronic meters (two wires only),”
IEC 62053-31, 1998.

[10] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build
High-Performance Network Programs,” Internet Computing,
IEEE, vol. 14, no. 6, pp. 80 –83, nov.-dec. 2010.

[11] E. Hammer, “The OAuth 2.0 Authorization Protocol,” IETF
Internet-Draft draft-ietf-oauth-v2-23, January 2012.

[12] B. Bibeault and Y. Katz, Jquery in action. Greenwich, CT,
USA: Manning Publications Co., 2008.

[13] IEC International Standard, “Industrial communication net-
works - Fieldbus specifications,” IEC 61158, 2003.

