Measuring Web Latency and Rendering
Performance: Method, Tools & Longitudinal Dataset

Alemnew Sheferaw Asrese*, Steffie Jacob Eravuchirat, Vaibhav BajpaiT, Pasi Sarolahti*, Jorg ottt
*Aalto University, Finland fTechnische Universitit Miinchen, Germany fSamKnows Limited, UK

(alemnew.asrese |
(bajpaiv |

Abstract—This paper presents Webget, a measurement tool that
measures web Quality of Service (QoS) metrics including the
DNS lookup time, time to first byte (TTFB) and the download
time. Webget also captures web complexity metrics such as the
number and the size of objects that make up the website. We
deploy the Webget test to measure the web performance of Google,
YouTube, and Facebook from 182 SamKnows probes. Using a 3.5-
year-long (Jan 2014 - Jul 2017) dataset, we show that the DNS
lookup time of these popular Content Delivery Networks (CDNs)
and the download time of Google have improved over time.
We also show that the TTFB towards Facebook exhibits worse
performance than the Google CDN. Moreover, we show that the
number and the size of objects are not the only factors that
affect the web download time. We observe that these webpages
perform differently across regions and service providers. We also
developed a web measurement system, WePR (Web Performance
and Rendering) that measures the same web QoS and complexity
metrics as Webget, but it also captures the web Quality of
Experience (QoE) metrics such as rendering time. WePR has a
distributed architecture where the component that measures the
web QoS and complexity metrics is deployed on the SamKnows
probe, while the rendering time is calculated on a central server.
We measured the rendering performance of four websites. We
show that in 80% of the cases, the rendering time of the websites
is faster than the downloading time. The source code of the WePR
system and the dataset is made publicly available.

I. INTRODUCTION

The web has evolved from a simple static text and image
delivery platform to a complex ecosystem with multiple dy-
namic and media-rich contents. The delivery of the contents
has also changed from a single server to a number of servers
often spread across different administrative domains. This
complexity increases the download time of the websites [1]
and consequently degrades the user experience. Studies show
that the user experience has a significant impact on business
revenue [2] whereby users with bad web experience tend to
abandon the websites early. One of the most frequently used
metrics in analyzing web performance is latency; the shorter
the waiting time to get the contents, the more the user is
satisfied with the service [3].

In order to reduce the latency and improve the web perfor-
mance, various improvements in content delivery mechanisms,
transport and application protocols have been proposed. For
instance, TCP improvements such as reordering [4], packet
losses [5] and startup performance [6] along with new proto-
cols such as QUIC [7] and HTTP/2 [8] are getting deployed to
improve the web performance. Despite these efforts, the web

pasi.sarolahti)@aalto.fi,
ott)@in.tum.de,

steffie@samknows.com

od

00

Fig. 1: Geographical distribution of 182 SamKnows probes. More
than 85% of them are at residential network.

performance is not perfect and the user still expects a lower
latency when surfing the web.

In this work, we study how the web performance has
evolved over time, what factors contribute towards it and how
they differ by ISP and by region. We seek also to understand
how the download performance of webpages contributes to the
visual rendering performance. Towards this end, we designed
and developed a web measurement tool, Webget, that measures
the web QoS metrics for static objects that make up a webpage
such as the DNS lookup time, TTFB and the download
time of each object. Webget also measures web complexity
metrics including the number and the size of objects that
make up the webpage. Sundaresan et al. [9] deployed this
test (they call it Mirage) on Bismark probes to measure 9
websites. They deconstructed the page load time (PLT) of
static objects into constituent components (DNS lookup time,
TCP connection setup and object download time) and showed
that latency optimizations can yield a significant improve-
ment in overall PLT. Our work extends their analysis [9]
by presenting longitudinal aspects (3.5 years long) of web
performance as measured from SamKnows probes [10] using
a similar sample size of websites. Given, the SamKnows
probes have limited resources and cannot execute JavaScript,
we also extended the methodology by developing WePR, a
measurement system [11] that allows offloading the JavaScript
execution to a separate parsing server, thereby providing the
possibility to also evaluate the website rendering behavior
which is essential to understand the web QoE. WePR has
a distributed architecture. We deploy the component that
measures the web QoS and complexity metrics at the end-
user location and calculate the rendering time on a centralized

server. This allows WePR to be deployed at scale and measure
the web performance without user interaction. We measured
the performance of specific webpages of three most pop-
ular websites (www .google.com, www.youtube.com,
www . facebook.com) using Webget from 182 SamKnows
probes connected at 70 different origin Autonomous Systems
(ASes) (see Fig. 1) with more than 85% of these probes
connected in residential networks.

Previous studies [1], [12]-[15] that have measured a large
sample of destinations either provide a snapshot view or
measure from a smaller number of vantage points. In this
work, we do not aim to exhaustively cover a large number
of destinations. The goal of our work is to evaluate the web
performance of Google and Facebook CDNs as seen from a
large number of vantage points. We also focus on understand-
ing factors that contribute to web performance bottlenecks
over a longitudinal period as the broadband speeds of cus-
tomers improve over the years. We chose to measure Google
and Facebook CDNs because, we observe that a quarter of
Alexa top 100 websites are google. , youtube.com and
blogspot . * hosted on Google alone [16], [17], while 3%
websites are hosted on Facebook. The traffic distribution of the
Alexa top websites also shows a Pareto distribution whereby
Google CDN (also hosting YouTube) and Facebook CDN
generate the majority [18], [19] of the traffic in ISP networks.
In this paper, we analyze the download performance using
3.5 years long dataset collected from the probes. Additionally,
we also measured the rendering performance of four websites
using our WePR system as seen from 65 probes (a subset
of the 182 SamKnows probes). We also present the web
rendering performance analysis using a nine months long
dataset. Overall, we provide two main contributions —

1. Method and Tools — We describe the design and imple-
mentation (§ III) of a web QoS measurement tool (Webget) and
a measurement system (WePR) that can measure both web QoS
and web rendering performance at scale. The measurement
system is validated (§ IV) and the benchmarking performance
of the system is presented, along with the deployment (§ V)
of the measurement system and the collected dataset that we
publicly release to the community.

2. Longitudinal Dataset — The first longitudinal (Jan 2014
- Jul 2017) dataset shows that the DNS lookup time for the
three websites (§ VI) and the download time towards Google
have improved over time. The webpage complexity (in terms
of the number and the size of objects) [1] alone does not affect
the webpage download performance. For instance, Google’s
webpage that we measure has a higher complexity compared
to Facebook and YouTube. Yet, Google has a shorter download
time than YouTube, and a shorter TTFB than Facebook and
YouTube. This is due to content cache deployments within
the ISP’s network that lower the IP path lengths towards
Google. We also witness a small improvement in TTFB
of Google over the years. We show that broadband speed
improvements does not always yield a better web performance.
Our ISP-based analysis reveals that probes connected within
the Comcast network in ~40% of the cases observe longer
TTFB towards Facebook. Our region-based analysis shows
that probes within ARIN and RIPE region (§ VI) exhibit a

better download performance. The second nine-months long
dataset of rendering performance towards four websites shows
that the download time of the websites is twice longer than
the time required to render (§ VII) the visible portion of the
websites in half of the measurements.

This paper builds on our earlier work [11]. In this paper,
we added substantial background material, including a survey
(§ II) of recent web performance testing, monitoring and
benchmarking tools and related methods. We also performed
a longitudinal analysis of web QoS (§ VI) using a 3.5 years
(Jan 2014 — Jul 2017) long collected dataset. In addition, we
repeated the analysis in the previous work [11] using a larger
(9 months long, Mar 2015 — Dec 2015) dataset. We highlight
the implications (§ VIII) of our measurement results towards
the management and operations of networks and also discuss
limitations (§ IX) and future possibilities of this work

To encourage reproducibility [20], [21], the measurement
system [22] is open-sourced. The entire dataset and software
used in this study is also made publicly available [23].

II. RELATED WORK

We present related work focusing on the evolution of
webpages, impact of latency on web performance [24], mech-
anisms employed to reduce web latency and improve QoE.

Webpage evolution — Fetterly ez al. [25] studied how the
web has been changing, and how often the changes happen
in web content. Others studied where the contents are hosted,
how they are replicated and served to the users [26], and also
examine the changes in web traffic patterns [27], [28].

Web latency — Several studies have evaluated how web
latency affects the overall user satisfaction and experience.
Arapakis et al. [29] studied the impact of response latency on
the user behavior in web search. They showed that users are
sensitive to increasing delays in the response. Flach et al. [5]
analyzed the effects of TCP timeout and loss recovery on
webpage latency. They used redundant transmissions to design
a new loss recovery mechanisms for TCP so as to reduce the
latency caused by TCP’s timeout-driven recovery mechanism.
Mandalari et al. [30] studied the roaming ecosystem and
observed web latency penalties due to the home routing policy
adopted by mobile operators within Europe.

Web performance — Sundaresan et al. [9] used Webget
to study performance towards nine popular websites from
5K Bismark probes. They show that in situations where
the throughput of the access link is more than 16 Mbps,
latency becomes the main factor affecting PLT. They show
that DNS and TCP connection caching at the edge can yield
improvements to the overall PLT. Zaki et al. [13] studied web
performance in developing regions. They showed that the main
causes for poor web performance in these regions are lack
of good DNS infrastructure and pervasive content caching.
Fanou et al. [31] showed that the inter-AS delays and the non-
availability of web content infrastructure (as most of the web
contents are served by the US and Europe) are also the causes
responsible for poor web performance in Africa. Vesuna et
al. [14] ran a controlled experiment on 400 webpages (a
subset of Alexa top 2K websites) to show that caching that

improve PLT by 34% in desktop pages, and 13% in the mobile
pages. Liu et al. [15] studied the performance of HTTP/2 and
HTTPS by cloning 200 Alexa top websites into a local server.
The websites were accessed via HTTP/2-enabled proxy using
Firefox and Android browsers to show that HTTP/2 could
either decrease or increase the PLT under various network
conditions and page characteristics.

There have also been work [32], [33] studying the impact
of web object interdependencies on the performance of the
webpages. Butkiewicz et al. [1] studied the impact of webpage
complexity on the download performance of websites. They
showed that the number and size of objects in the webpage are
factors that affect the PLT. Studies [17], [34]-[36] exploring
scenarios that affect web performance and QoE have also been
conducted. For instance, Naylor ef al. [34] showed the impact
of using the secured version of HTTP on PLT.

Improving web performance — Wang et al. [37] in-
troduced a micro-caching technique to improve web perfor-
mance that caches web content at a finer granularity. They
went further and developed Shandian [12], a tool that can
restructure the webpage load process to consequently half the
PLT of webpages. Butkiewicz et al. [38] designed a tool that
prioritizes the most relevant web content for user’s preference
to improve the web performance and QoE in mobile devices.
Kelton et al. [39] proposed a system that uses HTTP/2 push to
optimize the user perceived PLT by prioritizing web objects
that are visually interesting for majority of the users. Li et
al. [40] implemented a framework that reorders web objects
to reduce the Above the Fold (ATF) time, the time required to
show the contents in above-the-fold area of the webpage. They
showed that reordering objects using this framework reduced
the ATF time especially for complex websites.

In order to reduce web latency, new application and trans-
port protocols have lately been proposed and being adopted.
For instance, Zhou et al. [41] designed a new naming and
transport protocol which reduces latency by shortcutting the
DNS request and removing TCP’s three way handshake.
Google has proposed QUIC [7], a multiplexed, low-latency
transport protocol to improve the performance of HTTPS
traffic. Biswal et al. [42] showed that QUIC improves PLT
in poor network conditions, but it does not provide significant
improvements when the webpage contains many small objects.
Zimmermann et al. [43] studied how the HTTP/2 [8] server-
push improves the perceived PLT. They showed that server-
push does not always yield a better perceived performance,
but can also degrades the performance. As such, a proper push
configuration is necessary to improve the end user experience.

Web QoE - Different confounding factors [44] that
emanate from the human, context, system and the content
perspective influences the web QoE. The waiting time to get
the content is one of the paramount factor that impacts the
browsing QoE. The interaction design and ease-of-use [45]
also has an impact on the overall QoE. For instance, Ho3feld et
al. [46] show that memory effect (psychological factor of
past web browsing experience) is a dominant influencing
factor for the user QoE. The user perceived PLT is also
different from the PLT measured at the network level since
the rendering machine requires certain amount of time to

display the content on the browser. Towards this end, Egger et
al. [47] performed a subjective study, where users were asked
to browse a set of webpages and report the task completion
time, as their subjective PLT. It was found that the task
completion time is also a key influencing factor for web
QoE [48]. Sackl et al. [49] studied the impact of network
outage on web QoE. Their subjective study revealed that a
short outage (four seconds or shorter) highly influences the
user annoyance level, whereby in web browsing sesssions,
users can tolerate outages up to eight seconds. This shows that
the impact of network outage in QoE is application dependent.
Bocchi et al. [2] introduced Bytelndex and Objectlndex,
metrics that can better approximate the actual user QoE. They
showed that the proposed metrics are highly correlated with
Google’s SpeedIndex, and offer advantages in computational
complexity. These metrics consider the time taken to download
all the objects in the webpages, while our proposed metric
(rendering time) considers time taken to show the contents in
the above-the-fold area. Albeit, computing the rendering time
is computationally expensive, our proposed system also allows
measuring the web QoE in the wild.

Tools — W3C web performance working group standard-
izes the web performance measurements and APIs in web
browsers. The group has specified several web performance
measurement APIs. Among these, Navigation Timing, Re-
source Timing and User Timing APIs help to measure the
performance of a website on a real world. Page Visibility,
Efficient Script Yielding and Display Painting Notification
APIs also provide basic information about the rendering state
of the webpage and facilitate developers to write resource
(CPU and power) efficient web applications. For instance,
the Page Visibility API enables a developer to determine the
current visibility of the page. These APIs allow measurement
of the performance of websites in the browser, but they cannot
substitute the visual perception of the end user.

Tools to measure and monitor network and web performance
have also been developed. These include browser-based [50],
[51], headless web clients [9], [52], host measurements anno-
tated with user perception [53] and HTTP-based application
replaying [54] tools. For instance, Hora et al. [55] imple-
mented (as a Google Chrome extension) a lightweight tool
to approximate the ATF time using the browser heuristics.
Albeit, WePR is not a lightweight solution to approximate
the rendering time, it considers all objects that appear in the
above-the-fold area, unlike implementations [55] that consider
only images and skip media objects such as Adobe flash.
Most of the aforementioned tools are not suitable for large
scale deployment. For instance, they require user interaction
to run the experiments. They also do not consider the most
critical metrics for approximating the user experience. WePR
closes these gaps by better approximating the user browsing
experience and not requiring user interaction for executing the
experiment at scale.

III. SYSTEM DESIGN AND METHODOLOGY

We present the methodology and the system we developed
to measure the web latency and the visual rendering time.

Parsing Server E
Data Collection|
Server

6. Upload
measurement
results

N

2)|Get website elements

I

3. Receive list

of elements)

1. Request list
of elements

'
'

5. Send the Eeng_erlngi :

4. i :

Fetch webpag O, & the recorded, || o !

& record metrics metrics = H

SamKnows Load Balancer !

Web Servers Probe | Rendering !

Machine #n

Rendering Server

Fig. 2: The distributed architecture of WePR. The SamKnows Probes
are located in the customers premises, the parsing and rendering
servers are located in data centers.

While different tools are available (see § II) to measure
the web browsing performance, most of them are either not
scalable or do not cover a wide-range of metrics at different
layers. Hence, our goal is to develop a scalable measure-
ment tool for assessing web performance with the network
QoS, web complexity and the application level metrics. The
metrics include DNS lookup time, TTFB, the number and
the size of objects, PLT and the visual rendering time. To
better represent and understand the real web user experience,
such tools and systems need to collect an actual browsing
data from different vantage points located at the gateway of
the subscribers’ premises. There are measurement platforms
(e.g., the SamKnows measurement infrastructure) that enable
users to deploy tests and collect measurement results from
multiple vantage points. The measurement devices used in
these platforms are often lightweight. Due to this constraint,
they cannot run a full web browser engine to compute the
application-level metrics such as the rendering time. However,
it is possible to offload this task and calculate the application
level metrics by running a web browser engine on a different
machine (e.g., in a data center).

WePR - is a web latency and rendering measurement
system composed of different components. Fig. 2 illustrates
the overall distributed architecture of WePR. We offload each
component to different devices and locations. The parsing
server parses the home page of a website to extract the URIs
of all the objects that make up the webpage. It also executes
scripts to get the dynamic objects of a webpage. The Sam-
Knows probes are measurement devices that run the Webget
and WebPerf tests to measure the download performance of
a webpage and push the results to the rendering server or to
the data collection server. The rendering server computes the
rendering time of a website. The data collection server stores
the measurement results collected from the rendering server.
The flow of operation is as follows. The SamKnows probes
run the test and initiate the measurement by requesting the list
of URLs for a website from the parsing server (#1 in Fig. 2).
The parsing server then fetches the given website, extracts the
URLs of the objects (#2) and sends them to the probes (#3).
The SamKnows probes then download the objects, measure the
performance (#4), and push the results and the downloaded
objects to the rendering server (#5), respectively. The load
balancer then distributes the incoming rendering request to the

available rendering machines. After computing the rendering
time, the rendering machines push the results (#6) to the data
collection servers.

We choose a distributed architecture for two main reasons.
First, the SamKnows probes at the customer premises have
limited resources. They cannot run a browser rendering engine
that executes scripts and heavy computations like calculat-
ing the rendering time. As such, we designed the system
that offloads the heavy computations to the parsing server
(see § III-B) and the rendering server (see § III-C). Second,
assuming the measurement probes are powerful machines
with sufficient resources (e.g., a regular PC if crowdsourc-
ing measurements are performed instead) to execute scripts
and run resource-intensive computations, one would not have
privileges to alter the user’s machine settings or install the
necessary software (e.g, ImageMagick, FFmpeg) that are nec-
essary to calculate the rendering time. Therefore, offloading
the different functions into different components is essential to
calculate the rendering time. We discuss the main components
of WePR, and describe the metrics that each component
measures in the process in more details.

A. SamKnows Probe

The SamKnows probes are OpenWrt based embedded mea-
surement devices running Linux, which execute the web
performance test software — Webget and WebPerf.

Webget — is a software that records the DNS lookup
time, TTFB, the download time, the number and the size of
each static object that makes up the website. Webget runs a
maximum of eight concurrent connections, and up to eight
parallel threads per domain. We chose this setting to match
the behavior of the user-agents that we have used in the past.
We have not updated the number of the parallel threads so far
because it would cause a significant change in the Webget
result. Note, the goal is to keep the parameters consistent
across the longitudinal (several years) data collection to avoid
fragmenting the data into smaller samples by not tweaking the
parameter space over time. Webget does not execute scripts. It
does not download nor take into account the dynamic objects,
which are common in modern websites.

WebPerf — In order to capture the detailed TCP and
HTTP statistics, and take into account both static and dynamic
objects of the webpage, we extended Webget. The extension,
WebPerf [11], downloads each object of the webpage based on
the list of URLS it received from the parsing server and pushes
them to the rendering server. These objects are necessary for
recreating the webpage in order to calculate the rendering time.
In the real world, different browsers open up to six concurrent
connections per domain and up to tens of parallel connections
to optimize the performance. As such, WebPerf has an option
to configure the maximum number of parallel connections.
In our measurement, we set it to open up to 20 simultaneous
connections across all domains and up to three parallel threads
per domain. WebPerf also has a feature of reusing a single TCP
connection to send multiple HTTP requests.

WebPerf is written is C and can be cross-compiled and
deployed in any Unix-like platform. WebPerf measures the

web QoS, web complexity metrics and the CDN used by
the website to deliver the contents. It downloads all the
objects that make up a webpage including those generated by
JavaScript and records a set of metrics for each object. The
metrics include the DNS lookup time, the number of messages
exchanged during DNS lookup, the time to establish TCP
connections, the time to perform the TLS handshake, HTTP
header size, the number of HTTP redirects, the time elapsed
due to the HTTP redirects, the number and size of the objects
and the download time.

The WebPerf test takes a URL of a website and sends
a request to the parsing server to get the list of URLs
of the objects that make up the website. Once it gets the
URL of each object of the website, it downloads the objects
and in the process measures the aforementioned metrics. We
developed our library for handling the HTTP downloads and
extract HTTP related information. The library was specifically
designed to allow developers to intercept request processing at
key points in the HTTP download process. WebPerf uses the
hooks that the library provides for recording the timestamps,
to extract header information, and to save the received data.

WebPerf overrides the default DNS resolver of the host
system and utilizes our DNS client for name resolution. Albeit
several DNS tools exist for Linux, they do not provide a
sufficient level of detail about the DNS resolution process.
The DNS resolvers also vary between operating systems (OSs)
by adding different optimizations such as client-side caching.
Thus, we employ our DNS client to measure the performance
without the optimizations available in the OSs. WePR uses
our own DNS API for the following reason. We calculate the
rendering time at a centralized server which runs a different
OS than the probes and may use a different DNS optimization
techniques than that of the probes. Thus, we want to make
sure that both probes and the rendering server use the same
DNS optimizations so that the rendering time is calculated
in the same settings as probes. Our DNS client measures the
delay caused by the DNS resolution when establishing a new
connection. It also records details about the resolution process
and the final query result. Moreover, the DNS client has a
client-side caching capability to optimize the DNS resolution.
During a webpage download, DNS resolution is performed
once per domain, and only one of the objects per domain will
have the metrics of the DNS resolution. All other objects from
the same domain will include a reference to the object which
triggered a DNS resolution. Therefore, the DNS metrics are
tied to the web objects.

B. Parsing Server

The parsing server parses the homepage of a website and
lists the URIs of each object (i.e., both static and dynamic)
that make up the website. It takes the URL of the website and
parses the DOM structure of the homepage and also executes
JavaScript codes by using PhantomJS. After parsing the DOM
and executing the scripts, it records the URIs of the target
objects (both static and dynamic) that need to be fetched to
render the webpage. Once it extracts the URIs, it sends them to
the SamKnows probes so that the probes start a performance

measurement and download each object. The parsing server
can also be deployed within the probes if they can run a
browser rendering engine.

C. Rendering Server

The rendering server runs web rendering test that calculates
the rendering time. The rendering time is the time taken by the
webpage content in the above-the-fold area (i.e., the portion
of the webpage that is visible without scrolling) to reach a
final stable state. It is the closest metric to approximate the
user-perceived page load time [56]. The PLT (the time to
fire the onLoad event) is still the commonly used metric
to estimate the QoE for web browsing. Nevertheless, recent
work proposed other metrics such as ATF time [40], [55]
and SpeedIndex to better approximate the end-user browsing
experience. Other work [55] call this metric ATF time, but
both are equivalent measures. We approximate these metrics
using our rendering test.

The rendering server comprises of a load balancer and
one or more rendering machines. Our objective is to build
a measurement system that can handle multiple measurements
simultaneously. Since the rendering time computation is not
a lightweight task, it is paramount to use multiple rendering
machines. Also, these rendering machines need to work in
a synchronized manner so as to effectively process all the
requests from the SamKnows probes. Hence, a load balancer
is necessary to process the incoming rendering requests and
assign them to the available rendering machines. The load bal-
ancer receives rendering requests from the SamKnows probes
and distributes them to the available rendering machines using
a round-robin mechanism. The load balancer is implemented
using HAProxy, which provides load balancing and proxying
for TCP- and HTTP-based applications.

The rendering machines execute two different applications:
(a) the playback module, and (b) the rendering manager
module. The playback module emulates a DNS server and
an HTTP server. It responds to DNS and HTTP requests.
The playback module throttles down the response time and
transmission rate to mimic the network delay observed at the
probes based on the measurements conducted by the WebPerf
test. Throttling the response according to WebPerf measure-
ment results tries to ensure that the rendering performed at
the rendering server follows a comparable network QoS as
observed by the probes. The playback module gets the inputs
for the responses from the locally stored objects. Those objects
are downloaded at the probes and pushed to the rendering
server together with the WebPerf measurement results.

The rendering manager module computes the rendering
time of the website as it would have been seen by a user
with the same network conditions as the probes. Once the
rendering manager module receives a rendering request from
the probes, it runs a (virtual) web browser and issues HTTP
GET request to the given URL. The browser rendering engine
renders the website based on the response from the playback
module. Thus, the website is recreated and displayed on the
screen. Additionally, the rendering manager records a video
(10 frames per second) of the browsing session for 15 seconds.

It breaks down the video at every 100 ms into a series of
bitmap images. The rendering manager computes the progress
of a webpage download by calculating the pixel changes on the
browser window in 100 ms intervals (the normal human visual
system perceives changes between 150 ms and 200 ms and we
believe that a 100 ms interval is adequate). The rendering time
is calculated by looking at the pixel changes in the above-the-
fold area of the website. If no pixel change has been observed
in 30 consecutive screenshots (i.e., no rendering event has
happened for 3 seconds), then we declare that the website has
stabilized and we take this as the point where the webpage
is fully rendered. In some cases, the pixel change continues
and the webpage may not stabilize within 15 seconds. This
might be due to persistently changing contents such as auto-
play enabled video advertisements in the webpage, or because
the website takes too long to load or to render the contents.

Nevertheless, determining whether or not a webpage is
fully rendered is challenging. The challenge gets worse if the
webpage contains frequently changing contents like animating
images or auto-play enabled video advertisements. Our current
solution is based on the assumption that many of the animating
contents in the webpages change less frequently than every
three seconds. In our recent study [57] performed in cellular
networks, we set three, ten, and fourteen seconds threshold for
determining when a website is stabilized and approximated
the ATF time. At the same time we used the browser timing
API to approximate the ATF time. The result showed that the
ATF time computed using the browser timing API is shorter
than the rendering time with the three seconds threshold. This
shows that three seconds threshold is sufficient to declare
when the website has stabilized. As this work focuses on
fixed-line networks, we believe that the users expect the
page to load within a second and three second threshold is
sufficient. Therefore, once a webpage has started loading and
no pixel change is observed for three seconds, the webpage is
considered to be completely rendered. As such, the rendering
time of a webpage is the duration between the time at which
the user starts navigating the webpage and the time at which
the last rendering event is observed. However, the three second
threshold does not consider webpages that have auto-play
enabled video contents. This is because videos usually change
with tens of frames per second, which makes it harder to set
a threshold for declaring when the webpage has stabilized.

IV. BENCHMARKING AND VALIDATION

The rendering server emulates fetching a website content
and rendering it on a web browser. For the purpose of parallel
analysis of multiple measurements, the rendering server should
not require an actual display device. For instance, a user
may want to run the rendering server in a virtual cloud
infrastructure. As such, we need to start the browsing and
capture a video of the browsing session in a virtual screen.
We used Xvfb, a virtual display server which performs all
graphics operations in memory without showing a screen
output. We also used Selenium, a browser automation tool
that can browse websites and record the browsing session in
a virtual screen. We accessed the Google Chrome rendering

CPU Utilization —— Memory Utilization

1.0 -
= 0.8 .I,
& 0.6 ll
w 0.4 Vi
/=) Ud
O 0.2 ’____,/’
O.O 4, T T r T T
20 40 100 200 300
Time (Sec) Memory (MB)

Fig. 3: The CPU and memory utilization by a single rendering
process. In the 99'" percentile the rendering server consumes up
to 45 sec. CPU time and 290MB memory to finish a rendering task.

engine using Chromedriver. Selenium provides APIs that help
to integrate browsing a website in a virtual screen and at the
same time recording the virtual screen.

We measured the CPU and the memory usage of the ren-
dering server in our measurement setup. The specification of
the rendering server is — Ubuntu 14.04.2 LTS, quad-core Intel
Xeon(R) processor (2.65GHz each), and 4GB RAM. Fig. 3
shows the CPU and the memory consumption by a single
rendering process. Approximately 99% of the web rendering
processes took 45 seconds of CPU time and 290MB of mem-
ory. The most resource consuming part of the rendering server
operations are the screen recording and the image processing
to calculate the rendering time (see § III-C). Improving the
screen recording method would enhance the performance of
the rendering server. Investigating efficient screen capturing
methods is left for a future work.

We validated our approach and the results by measuring
the rendering time of ten non-HTTPS websites in two cases.
First, we fetched the contents of the websites using WebPerf
and rendered using Mozilla Firefox (version 46.0). Then im-
mediately we browse the same website using Mozilla Firefox
from the same laptop. We calculate the rendering time for both
cases. The laptop has 8GB RAM, quad-core Intel processor
(2.30GHz each), and Ubuntu 16.04.2 LTS operating system.
The laptop is connected to a university WiFi network. The
browser cache is cleared before fetching the web contents. To
retrieve similar contents of the websites, the same User-Agent
string has been used for both WebPerf and Firefox. Moreover,
we set Firefox and WebPerf to use the same number of
maximum parallel connections to hosts and concurrent threads
per server. We ran this experiment 1500 times.

Fig. 4 shows the similar rendering time of the websites using
both tools. The rendering time of the websites, when WebPerf
and Firefox fetch the content, shows a positive correlation
(Pearson correlation coefficient of 0.4). We calculated the delta
of the rendering time of the websites (when the content is
fetched either by Firefox and WebPerf). The difference in
the rendering time of the website is negligible in 50% of
the cases, implying the rendering time of the websites is
equal irrespective of the tool used to fetch the contents. In
25% of the times, the rendering time is faster (by 400 ms)
when Firefox fetches the content. In 25% of the cases, the
rendering time is faster (by 500 ms) when WebPerf is used to
download the content. The reasons for this difference could
be the load on the web server and the latency difference

1.00 [
-

0.75 L=
&5 e
o 0.50 ; e Webpert

0.25 / Firefox

/

0.001 ' | | | |

° ? 4 6 8 10

Rendering Time (s)

Fig. 4: The rendering time of ten websites when the contents are
fetched by the Firefox browser and by WebPerf. The websites show
similar rendering behavior regardless of the tool (WebPerf or Firefox)
used to fetch the contents.

due to the variation on the paths while fetching the objects
using Firefox and WebPerf. That is, at different times the
web server could have different load and the delays in the
response vary depending on the server load. Furthermore, due
to network routing changes at different times, Firefox and
WebPerf software may traverse through different paths while
fetching the contents of the websites, which may add variation
in the latency. Note, we observed that the rendering time
is shorter when the website contains encrypted contents and
downloaded by WebPerf. This is due to the fact that the current
implementation of the playback server does not support secure
connections (see § IX) and the browser does not get response
for secure object requests. As a result, pixel changes in the
above the fold area are small and the rendering time becomes
short. Consequently, for our validation, we have only chosen
websites that have non-secured contents.

We also manually inspected the webpage download behav-
ior for cases that have a short rendering time. We witnessed
the website appearance looks normal even if the rendering
time is ~500 ms. We observed this behavior in both cases
when the websites are fetched using either Firefox or WebPerf.
That is, we did not see any missing content in the above-the-
fold area of the website. In fact, while browsing the web in
a real world, the whole content of the webpage may instantly
appear, a broken page may display in the browser, or the
browser window may remain blank until further reloading is
performed. We verified that all these browsing behaviors exist
in our measurement system WePR as well.

V. DEPLOYMENT AND DATA COLLECTION

We cross-compiled the Webget test and deployed it on
182 SamKnows probes distributed globally. These probes are
located in more than 70 origin ASes, covering 28 different
countries including South Africa and South Asian countries
(see Fig. 1). The test measures the performance of specific
webpage of three most popular websites:

YouTube — www . youtube . com

Facebook — www. facebook.com/policies

Google — www.google.com/mobile

These webpages are measured every hour. Going forward,

we refer to these webpages as YouTube, Facebook, and
Google, respectively. We considered popularity, content con-
sistency and the size of the webpages as a criteria of choice.
We ensure these webpages do not require user interaction

@ 103 CoTTTTmm ey 25
" --- Webpage Size @ |T77°"" H*
2 —— Number of Objects
10t , , , o Lo3
Jan Jul jJjan Jul Jan Jul Jan Jul
2014 2015 2016 2017

Fig. 5: Time series of the daily median of the size and the number
of the objects of Google.

to show meaningful content. Since the goal of the study is
to understand longitudinal aspect of web latency, we picked
webpages that exhibit relatively consistent static content and
change infrequently (Fig. 6) over the duration of the mea-
surement study. Moreover, as our measurements run from
volunteers home and repeat every hour, we also took the size
of the webpage into account to ensure that our measurement
traffic does not overwhelm the users’ home network. The
primary objective of this study is not to compare download
performance of webpages. Instead, the aim is to understand
what factors contribute to web performance across ISPs and
geographical regions. In § VI, we present key observations
from the analysis of 3.5 years long (Jan 2014 to Jul 2017)
dataset collected from this measurement study.

The rendering server runs on a Virtual Machine (VM) which
is part of a cluster of servers at Aalto University. In our de-
ployment we used three VMs as a rendering machine and one
VM as a load balancer. Each VM runs Linux (Ubuntu 14.04.2
LTS, Intel Xeon(R) 2.65GHz quad-core CPUs, and 4 GB
RAM). We used the Google Chrome browser (Version 46.0)
and Chromedriver (version 2.30) for rendering the websites.
We deployed the WebPerf test for nine months (Mar 2015 —
Dec 2015) on 65 SamKnows probes located in different origin
ASes mostly in Europe. Each probe measures four websites:
bbc.com
ebay.com
.sina.com.cn
reddit.com

e WWW.
o WWW.
o WWW
e WWW.

These websites are measured every four hours. We chose
these websites to cover a range of popular categories and also
take the deployment location of the probes into consideration.
In § VII, we present the analysis of the rendering performance
of these websites.

VI. A LONGITUDINAL VIEW OF WEB LATENCY

We present the analysis of the 3.5 years long dataset
collected using the Webget test focusing on web latency. We
begin by presenting the web latency of the three popular
web services, and then perform a temporal analysis followed
dissecting web latency across regions and service providers.

A. Web latency

We begin by presenting the evolution of complexity of these
webpages. Fig. 5 shows the daily median of the total size
and the number of objects of Google. Both the total size and
number of objects of Google has reduced since Jan 2017.

—— YouTube

Facebook

—-— Google

['14 - '17]

CDF [1.40 M]

10?
Size [KB]

10°
Objects

Fig. 6: The CDF of the size and the number of web objects.

Facebook -— —— YouTube

DNS Lookup Time

Google
1.00

0.75 1
0.50 1
0.25 1
0.00-

CDF
['14 -'17]

1.00
0.75
0.50
0.25 1
0.00 -

CDF

1.00 1
0.75 1
0.50 1
0.25 1
0.00 -

CDF

102 103

Time (ms)

10° 101

Fig. 7: CDF of the performance of the three popular websites in
terms of different metrics.

Fig. 6 shows the distribution of the size and the number of
objects of all the three webpages. As it can be seen, Facebook
has the smallest size and a lower number of objects throughout
the measurement period. Moreover, in 80% of the cases,
Google has the highest number of objects and the largest size
of objects. YouTube showed different behavior over time. For
instance, since mid of 2015 the number of objects of YouTube
shrunk by about 70% compared to the previous year.

The webpages that we measure have multiple objects possi-
bly hosted at different server locations. We measured the DNS
lookup time required to resolve the URL of each object and
also the TTFB of each object. We consider the webpage’s DNS
lookup time and TTFB as the average of the DNS lookup time
and the average of TTFB of the objects within the webpage,
respectively. Fig. 7 shows the CDF of the average DNS lookup
time, the average TTFB, and the download time of the three
webpages. The results show that in 55% of the measurements,
the three websites have relatively similar behavior in terms of
DNS lookup time. However, 45% of the cases, the DNS lookup
time of Facebook is 10% shorter than Google and YouTube.
The reason for this difference is that the clients need to make a
maximum of two domain name lookups to get the Facebook’s

—— G CDN
—+— G Cache
—— G Cache @ other AS

- YCDN

1.00 —+—+ '~ Laaid
0.75 / /1?*
8 0.50 ,/ /f:*’?
o T
/F ,+:+"f.{
0.25 y, /,/ﬁ_#_ﬂ;,
oo0) o LT
1 2 4 8 16

IP Path Length

Fig. 8: The IP path length from 100 SamKnows probes towards
Facebook (F), Google (G) and YouTube (Y). In 41% of the cases,
the probes get Google caches from the ISP.

policy page. Instead, in the case of Google and YouTube, the
clients need to resolve two to four and one to three DNS
names, respectively.

We also observed the average TTFB of the webpages. The
results show that there is difference in the average TTFB
of the webpages, even within Google and YouTube which
are supposed to share the same CDN infrastructure. For
instance, 50% of the measurements show that Google has
the shortest average TTFB than the other two (i.e., it has
about 55% and 117% improvement compared to YouTube and
Facebook, respectively). The reasons for this variation could
be the presence of caches, and difference in the IP path length
between the clients (probes) and the server (content replica).

Another observation is that Facebook takes longer to get the
first byte of the objects although the domain name resolution
takes the same amount of time as the other two webpages. We
further investigated the possible causes for this longer average
TTFB of Facebook, including the number of servers that the
clients contact to fetch the objects of the webpage [1] and
the path length to Facebook’s CDN [58]. We observed that
the objects embedded in the Facebook policy page are located
in a maximum of two web servers (in the median case, in a
single server). As such, the longer average TTFB of Facebook
(compared to the other two) is not due to the number of servers
that the clients need to contact to fetch the web objects. Chui et
al. [58] have previously shown using RIPE Atlas probes [59]
that the path length to Facebook’s CDN is longer compared to
other popular content providers such as Google. For instance,
60% of the Facebook contents are reachable in at least 2 AS
hops, while more than 55% and 80% of Google’s CDN can
be reached with just 1 AS hop and 2 AS hops, respectively.

We performed t raceroute to measure the IP path lengths
from 100 SamKnows probes (a subset of 182 probes used in
the Webget test) towards Facebook, Google and YouTube ser-
vices. Fig. 8 shows that Facebook has a longer IP path length
compared to Google and YouTube. In our traceroute
measurement, when the probes’ AS number is the same as
the destination AS number, it is identified as a cache at the
ISP. When the destination AS number is not the same as that
of the probes or Google, we consider them as a cache at other
AS. Applying this heuristic, we did not find any Facebook
cache at Internet Service Providers (ISPs). In 25% and 24%
of the cases, we witnessed Google and YouTube caches at

Facebook

—— Median

Google

DNS Lookup Time (ms)
=
o

=
o
0

10

10°

Fig. 9: The monthly median of the DNS lookup time of webpages over
time. The DNS lookup time of webpages has improved over time.

the ISPs, respectively. Moreover, in 16% and 10% of the
times, the probes reach Google and YouTube caches at other
ASes, respectively. Therefore, we can conclude that the longer
average TTFB of Facebook is due to a longer path length
of the Facebook CDN and absence of caches. The reason
for the spike in the average TTFB of YouTube (compared
to Google) could be the due to the absence of caches at the
ISPs network. That is, in 66% of the times, the probes need to
contact the YouTube/Google CDN to get YouTube’s landing
page. Nonetheless, in the case of Google, the probes go to the
Google CDN only 59% of the times.

In terms of the webpage download times, Facebook loads
faster than the other two webpages. While, at the 90"
percentile, the download time of Google is faster (62% at
the median) than YouTube. Note, the goal of this paper is
not to compare download times of different websites due
to the different static and dynamic nature of the websites.
However, we seek to understand the impact of the number
and the size of the objects on the download times. Fig. 6
shows that Facebook has fewer and smaller of objects, and
indeed Facebook shows better performance in terms of the
download time. Butkiewicz et al. [1] have previously studied
the impact of number and the size of the objects on the
download performance of a webpage. They highlight that such
complexity metrics do not directly affect the download times
of the websites. Our measurements confirm this assertion that
the number and the size of objects are not the only determinant
factors affecting the download times. For instance, we observe
that even though YouTube has the smaller number and size of
objects than Google, the download time of Google is shorter
than that of YouTube.

We also went further to understand the relationship between
the TTFB and download time for the webpages. We computed
the Pearson correlation coefficient between these two metrics
for each webpage. Google shows a stronger positive corre-
lation (0.64). Instead, Facebook shows a weaker correlation
(0.34) and YouTube shows a correlation of 0.46. The strength
of the relation between the TTFB and the download time of the
webpage could be attributed to the presence of caches. That is,
the average TTFB is a function of distance and the distribution

.| %%%%%%@%%T%éé%%%%%F%a%;;o%k%g%%%éé@% e
N
%@@@@@@ﬁ@@éé%%%%%%Tﬁjﬁ%%%@%ﬁﬁﬁ%%%%

Fig. 10: The monthly median of the TTFB of webpages over time.

Facebook

—— Median

Download Time (ms)

Jan Jul Jan Jul Jan Jul Jan

Fig. 11: The monthly median of the download time of the webpages
over time.

of objects into different locations. While, the download time is
a function of distance, the number and size of objects, and the
geographical distribution of objects into different locations.
As such, in situations where caches are available, both the
TTFB and the download time decreases symmetrically. While,
in situations where there is no cache available, the TTFB
increases, but the download time changes depending on the
number and size of objects. In our measurement, Google has
higher number of caches in the ISP’s network than YouTube
and Facebook. As such, the average TTFB and download time
of Google show a stronger correlation. On the other hand,
Facebook does not have caches inside the ISP’s network and
the correlation between the average TTFB and download time
of Facebook is weak.

B. Temporal view of web latency

Fig. 9 shows the evolution of the monthly median of the
DNS lookup time for the three websites. It can be seen that
the DNS lookup time for all websites has improved over time.
For instance, from 2014 to 2016, in the median case the
average DNS lookup time of Facebook, Google and YouTube
have improved by 59%, 56% and 61%, respectively. This
improved DNS performance could largely be a function of

Y

Fig. 12: The monthly median of the achieved throughput as witnessed
by the probes over time.

(a): Average Time To First Byte

1.004 "5______/_,_k — -
L0751 =
[a)] d '
o 0.50 ©
~
0.25 =
0.004 —=
1.004
L0757 =
5 0.501 o
0.25 2
0'00 b r T T 1
10! 102 103 10*

Time (ms)

—— Facebook -- RIPE [399.1 K]
—-— Google -- RIPE [371.9 K]
YouTube -- RIPE [368.6 K]
—— Facebook -- ARIN [141.8 K]
—-— Google -- ARIN [139.1 K]

--- YouTube -- ARIN [140.8 K]
Facebook -- OTHERS [55.4 K]
Google -- OTHERS [54.0 K]
YouTube -- OTHERS [55.2 K]

Fig. 13: The CDF of the average TTFB and download time of the
webpages across different origin ASes grouped by region. The average
TTFB of Facebook is longer in the rest of the world than Europe and
North America.

the reduced last-mile latency [9], [60] due to improved ISP
infrastructure [61] over the years. Fig. 10 and Fig. 11 show
the evolution of the performance of the webpages in terms
of TTFB and the download time, respectively. The results
show that, in the median case, the average TTFB and the
download time of Google has improved over time. Meanwhile,
the other two websites do not show a clear change over time.
Nonetheless, YouTube shows different behaviors over time
both in terms of TTFB and download time. That is, until mid
of 2015, YouTube shows both an increase and decrease, and
around July 2015 there was a dramatic improvement in the
download time. Since then, there is not much change in the
download time of YouTube. In the middle of 2015, YouTube
was known to have performed refactoring of its homepage
which led to reduced number of static objects by a factor
of four. As such, the total size of the static objects in the
landing page also decreased significantly. We speculate this to
be the reason for the download time improvement of YouTube
over time. Meanwhile, we observe that the download time of
Facebook also significantly increased in the middle of 2014. A
reason for this change could be the introduction of Facebook
privacy basics that updated the terms and policies. As a result,
the Facebook policy page added more number and a larger size
of objects compared to the situation until July 2014, whereby
the Facebook policy page only had a single object and could
be the reason for the different in download times.

The web browsing performance can also be affected by

(a): Average Time To First Bytﬁer

1.004 s —
] 274 I~
" 0.75 /'f;;:’ _:
5 0.50+ vy o
0.251 s =
' oy -
0.00 —
1.00 4 s
" 0.75 =
8 0.50 1 o
; o
0.254 ‘/ ,I o
0.004 i
10! 102 103
Time (ms)

—— Facebook -- BT [79.6 K]
—-— Google -- BT [80.2 K]
YouTube -- BT [78.1 K]
—— Facebook -- CC [70.8 K]
—-— Google -- CC [71.5K]

---YouTube -- CC [71.9 K]
Facebook -- TI [74.3 K]
Google -- TI [77.1 K]
YouTube -- Tl [75.5 K]

Fig. 14: The CDF of the average TTFB and download time of the
three webpages over selected origin ASes.

the broadband speed of the client [62]. In order to study the
evolution of (if any) broadband speeds within our dataset and
to verify any correlation between the achieved throughput and
the web latency, we also performed throughput measurements
on the SamKnows probes. Fig. 12 shows the time series of the
achieved throughput improvement as seen by the probes over
the measurement period. We have seen in Fig. 10 and Fig. 11
that the download times of Google has improved over time,
while the other two websites (i.e., Facebook and YouTube) do
not exhibit improvements in latency over time, even though
the achieved throughput has improved over the years. As such,
improvements in broadband speeds do not necessarily lead to
a better browsing experience.

C. Web latency by region and service provider

We dissected the web latency distributions of an year-long
subset of the dataset (08/2016 - 07/2017) by region and origin
AS of the probes. For instance, Fig. 13 shows the distribution
of the average TTFB and the download time of the webpages
from different origin ASes grouped by region (i.e., Europe,
Middle East and parts of central Asia (RIPE), North America
(ARIN), and the rest of the world (OTHERS)). We observe
that all the webpages have different download performance
across regions. The probes hosted in the regions other than
RIPE and ARIN show worse performance for all webpages.
For instance, the longer average TTFB and download time
of Facebook in these regions is most likely attributed to the
longer AS path length from the probes to Facebook’s CDN
and absence of caches as shown in Fig. 8.

Similarly, we also analysed the web latency towards web-
pages as observed from selected ISPs that host more than
10 SamKnows probes. Since, our goal was larger varied
distribution of probes, most of the origin ASes host up to
five probes. While, three origin ASes, i.e., Telecom Italia (TI),
British Telecom (BT) and Comcast (CC) host 14, 13, and 13
probes, respectively which we focus in this analysis. Fig. 14
shows the CDF of the average TTFB and the download time
of the webpages on these selected ISPs. As can be seen,

TABLE I: Average TTFB and download time [in millisecond] of the webpages across different regions and ISPs.

WEBPAGE [Metrics] RIPE ARIN Others BT CC TI
Med. Mean| Med. Mean| Med. Mean|| Med. Mean| Med. Mean| Med. Mean
Facebook TTFB 153 222 | 141 209 | 540 626 114 152 | 121 202 | 135 149
Download Time 536 962 | 523 654 | 2286 3244 385 1182| 459 641 | 489 563
Gooele TTFB 55 78 70 93 191 177 || 41 108 | 67 75 70 89
& Download Time 394 808 | 460 645 | 1407 1610 || 335 1633 | 438 500 | 511 786
YouTube TTFB 117 142 | 82 118 | 230 253 101 158 | 79 101 | 119 140
Download Time 595 958 | 585 743 | 1722 2068 | 475 1571| 537 608 | 642 916
1.00) n
= : = 1. e ———— -~
= 0.75 1 g 500 P .
~ a) o 0.75 | - o}
S 0.50 1 - - | 2
o) 1 —— Page load time = S 0.50 N
o 0.2549 I L . . = T —
1 Rendering time s o 0.25 =
0.00 . . . = Y000 &
0 5 . 10 15 20 5 10 15 =
Time (s)

Fig. 15: The PLT and rendering time of the websites.

Facebook has longer TTFB in ~40% of the probes hosted
in the CC network. The longer TTFB from some probes
hosted in the CC likely is due to longer AS path lengths
towards Facebook CDN. On the other hand, YouTube has
slower download performance in 70% of the probes hosted in
the TI network. Christian [63] in 2015 has shown that Google
has less (27) cache instances in Italy compared to UK (67)
and the USA (296) which could be one of the reasons for
the degraded download performance of YouTube in the TI
network. Table I illustrates the raw statistics of the average
TTFB and the download time of the webpages across the
studied regions and selected ISPs.

VII. WEB RENDERING PERFORMANCE

We now present the rendering performance of four web-
sites (§ III) that we measured using our WePR system. The
websites have a median object count of 62, 176, 131, and 32,
respectively. The rendering behavior in most of the websites
is that after an initial download period most of the visible
content is shown almost instantly. Additional web objects are
also downloaded later, but they do not have a significant effect
to change the visible part of the webpage. On the contrary, we
observed that there are some cases in which the websites take
longer to stabilize. That is, the pixels between consecutive
screenshots continue to change. We reason this could be due
to the page having animating images or auto-played advertise-
ments, which change frequently. Fig. 15 shows that the PLT
is longer than the rendering time for the measured websites.
The PLT and rendering time show a positive correlation (i.e., a
Pearson correlation of 0.41). In order to verify whether the PLT
is always longer than the rendering time, we calculated the
difference between PLT and the rendering time of the websites.

A Time (s)
Fig. 16: The CDF of difference of PLT and rendering time of websites.

Rendering Time

100 —
" 0.751 /& o4 e www.bbc.com
5 0.50 --- www.sina.com.cn
0.25 www.ebay.com
—— www.reddit.com
OlOO T T T T T T 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)
Med. Mean
www .ebay.com 1.4 2.7
www.reddit.com 0.8 1.4
WWW.sina.com.cn 2.1 34
www.bbc.com 1.2 1.6

Fig. 17: The rendering time of the websites [in seconds].

Fig. 16 shows that in about 20% of the cases the rendering
time takes longer than the PLT. This shows that even though
the web objects are downloaded, it may take longer to be
displayed to the user. We speculate that such a response occurs
in situations where the browser’s rendering engine takes longer
to process and to render the contents. Fig. 15 also exhibits a
heavy tail in the download time, which we attribute to third
party content that may not be optimized. The clients attempt
to download these objects although the content in the above
the fold area may not change much after the download.

We also witness that the download time of these websites
varies substantially. The variation in the download time is due
to factors such as the number and size of objects, and the
distance to the content. Additionally, HTTP redirects during

the download process add to the download delay. For instance,
we observe that www . ebay . com involves six HTTP redirects
in the median case and contribute to large download times,
whereas other websites involve at most a single HTTP redirect.
As such, HTTP redirects increase the webpage download and
rendering time and consequently degrade the user QoE.

Yet another observation is that the distance from the probes
towards the web server affects the rendering time. For instance,
www.bbc.com is hosted at Tadworth in the UK while
www.sina.com.cn is hosted in Beijing, China. Fig. 17
shows that the rendering performance is affected by the content
location relative to the client’s geographical location. Given,
majority of the probes used in the rendering analysis are
located in Europe, the effect of the server location on the
download and rendering time is visible, for instance, in the the
heavy tail distribution for www.sina.com.cn curve, since
this website is likely not optimized for Europe.

We also investigated the impact of throughput on the
rendering performance of websites. We used a speedtest
that runs on each probe. The web rendering test and the
speed test run independently. We took the hourly averages of
the results from both tests for each probe and investigated
how the results correlate. The results shows that there is
no direct correlation (i.e., a Pearson correlation coefficient
of -0.17) between the throughput and the rendering time of
a website. Similarly, using a ping test from each probe
(the tests run independently), we investigated the correlation
between latency (i.e., the round trip latency of a single packet)
and the rendering time of a website. The result shows that the
latency and the rendering time have a weak correlation (i.e.,
a Pearson correlation coefficient of 0.11).

VIII. IMPLICATIONS FOR SERVICE MANAGEMENT

Our results can help ISPs and content providers to better
design and manage their infrastructure to improve the end-user
QoE. For instance, our results show that cache deployments
(see Fig. 8) inside an ISP’s network help reduce latency
and path length towards popular content. This quantification
motivates the ISPs to provision caches within their network to
improve their end-users QoE.

ISPs can use our WePR measurement system for actively
and continuously monitoring their customers web browsing ex-
perience, in place of traditional tools such as wget that cannot
measure dynamic objects. In order to monitor their end-users
web QoE and understand the possible bottlenecks, an ISP can
deploy our rendering server at its back-end infrastructure and
deploy WebPerf at the customer premises of their subscriber
base. Vantage point distribution within the network helps the
ISP identify whether a quality degradation for a user is due
to a problem in the shared part of the network, or unique to
a single user line, or in the home network or a problem with
the over-the-top service. Moreover, ISPs can complement the
measurements that they already collect using our tools with
a passive traffic measurement that they can capture at their
backbone network not only to understand bottlenecks, but also
to better manage web traffic towards popular CDNs. The ISP
can also use our measurements for better capacity planning
and network design.

IX. LIMITATIONS AND FUTURE WORK

The SamKnows probes have been changing locations and
it is hard to maintain the metadata for all the probes. As a
result, we performed the ISP-based performance analysis only
on a subset of the timeline for which we knew the location
of the probes with certainity. Given the dataset does not
have information about which content is served by a primary
domain (or a third party domain), we are not able to analyse
the impact of content delivered by third party domains on
the download time. The content of a website may change
depending on the location from where the request is made.
In our measurement setup, the parsing server is located at
one vantage point only, which skews our view of content
delivery. We plan to explore the possiblity of distributing
the parsing server geographically on Amazon instances. The
current implementation of the playback module does not
currently support HTTPS and WebSocket requests. The three
seconds threshold, when calculating the rendering time, to
observe whether the webpage has stabilized or not does not
consider webpages that have auto-play enabled video contents.
Such cases need special but not trivial consideration to set the
threshold, and we plan to explore this case in future work.
We also plan to study the relationship between the rendering
time with different website stabilizing threshold and the other
relevant QoE metrics such as Bytelndex [55]. Evaluating the
rendering time for different screen sizes is yet another potential
future work item. The rendering time computation consumes
substantial computing resources to do the web rendering test
on a large scale and the scalability aspects of WePR need
more thorough investigation. Protocols such as HTTP/2 and
QUIC have recently got standardized and the deployment is
steadily increasing. The setup can be adapted to also initiate
measurements over HTTP/2 [64] or QUIC.

X. CONCLUSION

We presented WePR, a web performance measurement sys-
tem, composed of a set of tools that can be deployed at scale
and can be used to capture different web performance metrics.
Using WePR, we measured the web latency and the rendering
time of selected websites. Together with describing the tools,
system design and the associated metrics, we presented the
analysis of a 3.5 years long dataset collected using Webget,
one of the tools of our measurement system. Using this
dataset we showed that the DNS resolution time for the
three popular webpages has improved over time. The TTFB
and the download time instead show a significant difference
across webpages, that is, only Google shows improvement
over the period of our measurement study. The webpages
exhibit different download performance across geographical
regions and ISP networks. We also measured the rendering
time for selected webpages in addition to the web latency.
The web rendering results show that in 80% of the cases the
rendering time of the websites is faster than the download
time. While, achieved throughput does not appear to have a
direct correlation with the download and rendering time.

Reproducibility Considerations — To encourage repro-
ducibility, the measurement system is open-sourced [22]. The

collected dataset and the Jupyter notebooks used for analysis
are made publicly available [23]. Guidance on how to repro-
duce these results is provided and reproducers can contact the
authors for further questions.

Acknowledgements — We thank Magnus Boye, Sam

Crawford, Jamie Mason, Ermias Walelgne and Sosina Gashaw
for providing valuable contributions to this manuscript. This
work was partially funded by the EU Marie curie ITN program
METRICS (grant no: 607728) and EU FP7 program Leone
(grant no: 317647), and the EU Horizon 2020 research and
innovation programme SSICLOPS (grant no: 644866).

[1]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

REFERENCES

M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Characterizing Web
Page Complexity and Its Impact,” ser. IEEE/ACM TON , vol. 22, no. 3,
2014. [Online]. Available: https://doi.org/10.1109/TNET.2013.2269999
E. Bocchi, L. D. Cicco, and D. Rossi, “Measuring the Quality of
Experience of Web users,” ser. Internet-QoE Workshop, 2016. [Online].
Available: http://doi.acm.org/10.1145/3027947.3027949

S. Egger, T. Hoffeld, R. Schatz, and M. Fiedler, “Waiting times in
Quality of Experience for Web based services,” ser. IEEE QoMEX, 2012.
[Online]. Available: https://doi.org/10.1109/QoMEX.2012.6263888

E. Blanton and M. Allman, “On Making TCP more Robust to Packet
Reordering,” ser. ACM CCR, vol. 32, no. 1, 2002. [Online]. Available:
http://doi.acm.org/10.1145/510726.510728

T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, ‘“Reducing Web
Latency: the Virtue of Gentle Aggression,” ser. ACM SIGCOMM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486014
N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An Argument for Increasing TCP’s Initial
Congestion Window,” ser. ACM CCR, vol. 40, no. 3, 2010. [Online].
Available: http://doi.acm.org/10.1145/1823844.1823848

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. R. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W. Chang, and Z. Shi, “The QUIC Transport Protocol:
Design and Internet-Scale Deployment,” ser. ACM SIGCOMM, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098842

M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” RFC 7540 (Proposed Standard), May 2015.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7540.txt

S. Sundaresan, N. Feamster, R. Teixeira, and N. Magharei, “Measuring
and Mitigating Web Performance Bottlenecks in Broadband Access
Networks,” ser. ACM IMC, 2013. [Online]. Available: http://doi.acm.
org/10.1145/2504730.2504741

V. Bajpai and J. Schonwilder, “A Survey on Internet Performance
Measurement Platforms and Related Standardization Efforts,” ser. IEEE
Communications Surveys and Tutorials, vol. 17, no. 3, 2015. [Online].
Available: https://doi.org/10.1109/COMST.2015.2418435

A. S. Asrese, P. Sarolahti, M. Boye, and J. Ott, “WePR: A
Tool for Automated Web Performance Measurement,” ser. IEEE
GLOBECOM QoEMC Workshop, 2016. [Online]. Available: https:
//doi.org/10.1109/GLOCOMW.2016.7849082

X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up Web
Page Loads with Shandian,” ser. USENIX NSDI, 2016. [Online].
Available: https://goo.gl/Nycfpz

Y. Zaki, J. Chen, T. Potsch, T. Ahmad, and L. Subramanian, ‘“Dissecting
Web Latency in Ghana,” ser. ACM IMC, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663748

J. Vesuna, C. Scott, M. Buettner, M. Piatek, A. Krishnamurthy, and
S. Shenker, “Caching Doesn’t Improve Mobile Web Performance
(Much),” ser. USENIX ATC, 2016. [Online]. Available: https:
//g00.gl/m9kTNZ

Y. Liu, Y. Ma, X. Liu, and G. Huang, “Can HTTP/2 Really Help
Web Performance on Smartphones?” ser. IEEE SCC, 2016. [Online].
Available: https://doi.org/10.1109/SCC.2016.36

V. Bajpai and J. Schonwilder, “A Longitudinal View of Dual-Stacked
Websites - Failures, Latency and Happy Eyeballs,” ser. IEEE/ACM
Transactions on Networking, 2019, to appear.

V. Bajpai and J. Schonwilder, “IPv4 versus IPv6 - Who Connects
Faster?” ser. IFIP Networking, 2015. [Online]. Available: https:
//doi.org/10.1109/IFIPNetworking.2015.7145323

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[35]

[36]

(371

(38]

(39]

[40]

C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, C. Ziemlicki,
and Z. Smoreda, “Not All Apps Are Created Equal: Analysis
of Spatiotemporal Heterogeneity in Nationwide Mobile Service
Usage,” ser. ACM CoNEXT, 2017. [Online]. Available: https:
//doi.org/10.1145/3143361.3143369

C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and
F. Jahanian, “Internet Inter-domain Traffic,” ser. ACM SIGCOMM,
2010. [Online]. Available: http://doi.acm.org/10.1145/1851182.1851194
V. Bajpai, A. Brunstrom, A. Feldmann, W. Kellerer, A. Pras,
H. Schulzrinne, G. Smaragdakis, M. Wihlisch, and K. Wehrle, “The
Dagstuhl Beginners Guide to Reproducibility for Experimental Network-
ing Research,” ser. ACM CCR, 2019 (to appear).

V. Bajpai, M. Kiihlewind, J. Ott, J. Schonwilder, A. Sperotto,
and B. Trammell, “Challenges with Reproducibility,” ser. ACM
SIGCOMM, Reproducibility Workshop, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3097766.3097767

A. S. Asrese, M. Boye, and P. Sarolahti, “WePR: Web Performance and
Rendering ,” https://github.com/alemnew/wepr, 2019.

A. S. Asrese, S. J. Eravuchira, V. Bajpai, and J. Ott, “Measuring
Web Latency and Rendering Performance: Method, Tools &
Longitudinal ~ Dataset (Dataset),” https://github.com/alemnew/
2019-tnsm-webperf-analysis, 2019.

B. Krishnamurthy and C. E. Wills, “Analyzing Factors that Influence
End-to-End Web Performance,” ser. Computer Networks, 2000.
[Online]. Available: https://doi.org/10.1016/S1389-1286(00)00067-0

D. Fetterlyy, M. S. Manasse, M. Najork, and J. L. Wiener, “A
Large-scale Study of the Evolution of Web Pages,” ser. Wiley SPE,
2004. [Online]. Available: https://doi.org/10.1002/spe.577

B. Ager, W. Miihlbaver, G. Smaragdakis, and S. Uhlig, “Web
Content Cartography,” ser. ACM IMC, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068870

T. Callahan, M. Allman, and V. Paxson, “A Longitudinal View
of HTTP Traffic,” ser. PAM, 2010. [Online]. Available: https:
//doi.org/10.1007/978-3-642-12334-4_23

S. Ihm and V. S. Pai, “Towards Understanding Modern Web Traffic,”
ser. ACM IMC, 2011. [Online]. Available: http://doi.acm.org/10.1145/
2068816.2068845

I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of Response
Latency on User Behavior in Web Search,” ser. ACM SIGIR, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2600428.2609627

A. M. Mandalari, A. Lutu, A. Custura, A. S. Khatouni, O. Alay,
M. Bagnulo, V. Bajpai, A. Brunstrém, J. Ott, M. Mellia, and G. Fairhurst,
“Experience: Implications of Roaming in Europe,” ser. MobiCom,
2018. [Online]. Available: https://doi.org/10.1145/3241539.3241577

R. Fanou, G. Tyson, P. Frangois, and A. Sathiaseelan, “Pushing the
Frontier: Exploring the African Web Ecosystem,” ser. WWW, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2872427.2882997

Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y. Wang,
“WebProphet: Automating Performance Prediction for Web Services,”
ser. USENIX NSDI, 2010. [Online]. Available: https://goo.gl/mRY7ta
X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying Page Load Performance with WProf,” ser. USENIX
NSDI, 2013. [Online]. Available: https://goo.gl/WI1wZZ

D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. M. Munafo, K. Papagiannaki, and P. Steenkiste, “The Cost of
the "S" in HTTPS,” ser. ACM CoNEXT, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2674005.2674991

A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan,
S. Venkataraman, and H. Yan, “Modeling Web Quality-of-Experience
on Cellular Networks,” ser. ACM MobiCom, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2639108.2639137

Y. El-khatib, G. Tyson, and M. Welzl, “Can SPDY Really Make
the Web Faster?” ser. IFIP Networking, 2014. [Online]. Available:
https://doi.org/10.1109/IFIPNetworking.2014.6857089

X. S. Wang, A. Krishnamurthy, and D. Wetherall, “How Much Can We
Micro-Cache Web Pages?” ser. ACM IMC, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663739

M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing Web Content to Improve User Experience
on Mobile Devices,” ser. USENIX NSDI, 2015. [Online]. Available:
https://goo.gl/rCggN4

C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving
User Perceived Page Load Times Using Gaze,” ser. USENIX NSDI,
2017. [Online]. Available: https://goo.gl/eXTLAH

W. Li, Z. Zhao, G. Min, H. Duan, Q. Ni, and Z. Zhao, “Reordering
Webpage Objects for Optimizing Quality-of-Experience,” ser. IEEE

https://doi.org/10.1109/TNET.2013.2269999
http://doi.acm.org/10.1145/3027947.3027949
https://doi.org/10.1109/QoMEX.2012.6263888
http://doi.acm.org/10.1145/510726.510728
http://doi.acm.org/10.1145/2486001.2486014
http://doi.acm.org/10.1145/1823844.1823848
http://doi.acm.org/10.1145/3098822.3098842
https://www.rfc-editor.org/rfc/rfc7540.txt
http://doi.acm.org/10.1145/2504730.2504741
http://doi.acm.org/10.1145/2504730.2504741
https://doi.org/10.1109/COMST.2015.2418435
https://doi.org/10.1109/GLOCOMW.2016.7849082
https://doi.org/10.1109/GLOCOMW.2016.7849082
https://goo.gl/Nycfpz
http://doi.acm.org/10.1145/2663716.2663748
https://goo.gl/n9k7NZ
https://goo.gl/n9k7NZ
https://doi.org/10.1109/SCC.2016.36
https://doi.org/10.1109/IFIPNetworking.2015.7145323
https://doi.org/10.1109/IFIPNetworking.2015.7145323
https://doi.org/10.1145/3143361.3143369
https://doi.org/10.1145/3143361.3143369
http://doi.acm.org/10.1145/1851182.1851194
http://doi.acm.org/10.1145/3097766.3097767
https://github.com/alemnew/wepr
https://github.com/alemnew/2019-tnsm-webperf-analysis
https://github.com/alemnew/2019-tnsm-webperf-analysis
https://doi.org/10.1016/S1389-1286(00)00067-0
https://doi.org/10.1002/spe.577
http://doi.acm.org/10.1145/2068816.2068870
https://doi.org/10.1007/978-3-642-12334-4_23
https://doi.org/10.1007/978-3-642-12334-4_23
http://doi.acm.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2600428.2609627
https://doi.org/10.1145/3241539.3241577
http://doi.acm.org/10.1145/2872427.2882997
https://goo.gl/mRY7ta
https://goo.gl/WJ1wZZ
http://doi.acm.org/10.1145/2674005.2674991
http://doi.acm.org/10.1145/2639108.2639137
https://doi.org/10.1109/IFIPNetworking.2014.6857089
http://doi.acm.org/10.1145/2663716.2663739
https://goo.gl/rCggN4
https://goo.gl/eXTLAH

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

Access, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.
2017.2689002

W. Zhou, Q. Li, M. Caesar, and B. Godfrey, “ASAP: a Low-Latency
Transport Layer,” ser. ACM CoNEXT, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2079296.2079316

P. Biswal and O. Gnawali, “Does QUIC Make the Web Faster?” ser.
IEEE GLOBECOM, 2016. [Online]. Available: https://doi.org/10.1109/
GLOCOM.2016.7841749

T. Zimmermann, B. Wolters, and O. Hohlfeld, “A QoE Perspective on
HTTP/2 Server Push,” ser. SIGCOMM Internet-QoE Workshop, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3098603.3098604

S. Barakovi¢ and L. Skorin-Kapov, “Survey of Research on Quality of
Experience Modelling for Web Browsing,” ser. Springer QUX, 2017.
[Online]. Available: https://doi.org/10.1007/s41233-017-0009-2

M. Varela, L. Skorin-Kapov, T. Méki, and T. Hofifeld, “QoE in the
Web: A Dance of Design and Performance,” ser. IEEE QoMEX, 2015.
[Online]. Available: https://doi.org/10.1109/QoMEX.2015.7148084

T. HoBfeld, S. Biedermann, R. Schatz, A. Platzer, S. Egger, and
M. Fiedler, “The Memory Effect and its Implications on Web QoE
Modeling,” ser. IEEE ITC, 2011.

S. Egger, P. Reichl, T. HoBfeld, and R. Schatz, “"Time is
Bandwidth"? Narrowing the gap between Subjective Time Perception
and Quality of Experience,” ser. IEEE ICC, 2012. [Online]. Available:
https://doi.org/10.1109/1CC.2012.6363769

D. Strohmeier, M. Mikkola, and A. Raake, “The Importance of
Task Completion Times for Modeling Web-QoE of Consecutive
Web Page Requests,” ser. IEEE QoMEX, 2013. [Online]. Available:
https://doi.org/10.1109/QoMEX.2013.6603203

A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer,
“Quantifying the Impact of Network Bandwidth Fluctuations and
Outages on Web QoE,” ser. IEEE QoMEX, 2015. [Online]. Available:
https://doi.org/10.1109/QoMEX.2015.7148078

C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr:
Illuminating the Edge Network,” ser. ACM IMC, 2010. [Online].
Available: http://doi.acm.org/10.1145/1879141.1879173

M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman,
N. Weaver, and V. Paxson, “Fathom: a browser-based network
measurement platform,” ser. ACM IMC, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2398776.2398786

S. J. Eravuchira, V. Bajpai, J. Schonwilder, and S. Crawford,
“Measuring Web Similarity from Dual-Stacked Hosts,” ser. CNSM,
2016. [Online]. Available: https://doi.org/10.1109/CNSM.2016.7818415
D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft, “HostView:
Annotating End-host Performance Measurements with User Feedback,”
ser. ACM SIGMETRICS PER, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1925019.1925028

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein,
J. Mickens, and H. Balakrishnan, “Mahimahi: Accurate Record-and-
Replay for HTTP,” ser. USENIX ATC, 2015. [Online]. Available:
https://doi.org/10.1145/2619239.2631455

D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and
D. Rossi, “Narrowing the Gap Between QoS Metrics and Web QoE
Using Above-the-fold Metrics,” ser. PAM, 2018. [Online]. Available:
https://doi.org/10.1007/978-3-319-76481-8_3

Q. Gao, P. Dey, and P. Ahammad, “Perceived Performance of Top
Retail Webpages In the Wild: Insights from Large-scale Crowdsourcing
of Above-the-Fold QoE,” ser. ACM SIGCOMM, Internet-QoE, 2017.
[Online]. Available: http://doi.acm.org/10.1145/3098603.3098606

A. S. Asrese, E. A. Walelgne, V. Bajpai, A. Lutu, O. Alay, and J. Ott,
“Measuring Web Quality of Experience in Cellular Networks,” ser. PAM,
2019, to appear.

Y. Chiu, B. Schlinker, A. B. Radhakrishnan, E. Katz-Bassett, and
R. Govindan, “Are We One Hop Away from a Better Internet?”
ser. ACM IMC, 2015. [Online]. Available: http://doi.acm.org/10.1145/
2815675.2815719

V. Bajpai, S. J. Eravuchira, and J. Schonwilder, “Lessons Learned From
Using the RIPE Atlas Platform for Measurement Research,” ser. CCR,
2015. [Online]. Available: http://doi.acm.org/10.1145/2805789.2805796
V. Bajpai, S. J. Eravuchira, and J. Schonwiélder, “Dissecting Last-mile
Latency Characteristics,” ser. ACM CCR, vol. 47, no. 5, 2017. [Online].
Available: http://doi.acm.org/10.1145/3155055.3155059

E. A. Walelgne, S. Kim, V. Bajpai, S. Neumeier, J. Manner, and J. Ott,
“Factors Affecting Performance of Web Flows in Cellular Networks,”
ser. IFIP Networking, 2018.

J. Shaikh, M. Fiedler, and D. Collange, “Quality of Experience from
User and Network Perspectives,” ser. Springer ANTE, vol. 65, no. 1-2,
2010. [Online]. Available: https://doi.org/10.1007/s12243-009-0142-x

[63] Varas, Cristian, “Demystifying Google Global Cache,” https://goo.gl/

wdMQwp, 2015, Retrieved on Mar 15, 2018.

[64] E. Bocchi, L. D. Cicco, M. Mellia, and D. Rossi, “The Web, the Users,

and the MOS: Influence of HTTP/2 on User Experience,” ser. PAM,
2017. [Online]. Available: https://doi.org/10.1007/978-3-319-54328-4_4

Alemnew Sheferaw Asrese is a doctoral student at
Aalto University, Finland. He is advised by Jorg Ott
and Pasi Sarolahti. He received Master’s (2014) de-
gree in Computer Science from University of Trento,
Italy and Bachelor’s (2010) degree in Information
Science from Adama University, Ethiopia. He was a
visiting PhD student at TU Munich (2017), INRIA
(2017), Simula Research Labs (2016). His research
focus is on network measurement and QoE mod-
elling. He has been involved in METRICS ITN, FP7
Leone and VENUS-C European research projects.

Steffie Jacob Eravuchira is an Embedded Commu-
nications Engineer at SamKnows Limited, London,
UK. She received her Masters degree in Computer
Science from Jacobs University Bremen, Germany
in August 2015. During her Masters she specialized
in Internet measurements using large-scale measure-
ment platforms such as SamKnows and RIPE Atlas.
She is interested in latency and IPv6 measurements
in broadband networks.

Vaibhav Bajpai is postdoctoral fellow at TUM,
Germany. He received his PhD (2016) and Masters
(2012) degrees in Computer Science from Jacobs
University Bremen, Germany. He is the recipient
of the ACM SIGCOMM (2018) best paper award
and IEEE COMSOC award (2017) for the best
dissertation in network and service management. He
is interested in future Internet protocols, content
delivery, network operations and management and
reproducibility of scientific research.

Pasi Sarolahti received his Master’s degree from
University of Helsinki (2001), and PhD degree on
Computer Science from University of Helsinki in
2007. He is currently a Lecturer in Aalto University
where he joined on 2010, after working 8 years in
Nokia and as a visiting researcher in International
Computer Science Institute in Berkeley, CA, USA.
His interests are in TCP/IP networking both as a
researcher and as an educator. He also served as
IETF working group chair for 6 years in DCCP and
TCPM working groups until 2016.

Jorg Ott holds the Chair for Connected Mobility
at Technical University of Munich since Aug 2015.
He is also an adjunct professor at Aalto University,
where he was a professor from 2005. He is interested
in understanding, designing, and building Internet-
based communication systems and services. His
research focus is on network and system architec-
tures, protocols, and applications for mobile systems.
This includes measuring, modeling, analyzing, and
predicting network characteristics and application
performance as well as preserving user privacy.

https://doi.org/10.1109/ACCESS.2017.2689002
https://doi.org/10.1109/ACCESS.2017.2689002
http://doi.acm.org/10.1145/2079296.2079316
https://doi.org/10.1109/GLOCOM.2016.7841749
https://doi.org/10.1109/GLOCOM.2016.7841749
http://doi.acm.org/10.1145/3098603.3098604
https://doi.org/10.1007/s41233-017-0009-2
https://doi.org/10.1109/QoMEX.2015.7148084
https://doi.org/10.1109/ICC.2012.6363769
https://doi.org/10.1109/QoMEX.2013.6603203
https://doi.org/10.1109/QoMEX.2015.7148078
http://doi.acm.org/10.1145/1879141.1879173
http://doi.acm.org/10.1145/2398776.2398786
https://doi.org/10.1109/CNSM.2016.7818415
http://doi.acm.org/10.1145/1925019.1925028
http://doi.acm.org/10.1145/1925019.1925028
https://doi.org/10.1145/2619239.2631455
https://doi.org/10.1007/978-3-319-76481-8_3
http://doi.acm.org/10.1145/3098603.3098606
http://doi.acm.org/10.1145/2815675.2815719
http://doi.acm.org/10.1145/2815675.2815719
http://doi.acm.org/10.1145/2805789.2805796
http://doi.acm.org/10.1145/3155055.3155059
https://doi.org/10.1007/s12243-009-0142-x
https://goo.gl/wdMQwp
https://goo.gl/wdMQwp
https://doi.org/10.1007/978-3-319-54328-4_4

	Introduction
	Related Work
	System Design and Methodology
	SamKnows Probe
	Parsing Server
	Rendering Server

	Benchmarking and Validation
	Deployment and Data Collection
	A Longitudinal View of Web Latency
	Web latency
	Temporal view of web latency
	Web latency by region and service provider

	Web Rendering Performance
	Implications for Service Management
	Limitations and Future Work
	Conclusion
	References
	Biographies
	Alemnew Sheferaw Asrese
	Steffie Jacob Eravuchira
	Vaibhav Bajpai
	Pasi Sarolahti
	Jörg Ott

