π CARISSMA Automotive Safety Research
 Aalto University

Measuring the Feasibility of Teleoperated Driving in Mobile Networks

Stefan Neumeier, Ermias Andargie Walelgne,

- Introduction
- Requirements
- Setup
- Dataset + Results
- Conclusion

What is Teleoperated Driving

- Remote control of Vehicles

Based on: T. Tang, F. Chucholowski, and M. Lienkamp, "Teleoperated driving basics and system design," ATZ worldwide, vol. 116, no. 2, pp. 16-19, Feb 2014. [Online]. Available. https://doi.org/10.1007/s38311-014-0018-1

Why Teleoperated Driving?

- Vehicles may not solve all situations autonomously
- Until Level 5 (fully autonomous vehicles)
- Supporting of non autonomous features
- From Level 5
- Software/Hardware failures
- Exceptional situations
- Use Cases
- Emergency Support
- Valet Parking Service
- Etc.

Challenges in Teleoperated Driving

- Teleoperated Driving needs Cellular Network
- Bandwidth
- Variable
- Probably Low
- Latency
- Variable
- Probably High
- Jitter
- No Connection
- -> Leads to problematic situations

Requirements for Teleoperated Driving

- Downlink:
- $0.25 \mathrm{Mbit} / \mathrm{s}$
- Based on: Steering command all 10 ms
- Uplink:
- Min. 3 MBit/s
- Based on: Resolution 640×480; three 90° cameras (front: two, back: one)
- Latency:
- Max. 250 ms
- 300 ms tolerable latency based on user study (- Time for Sensors/Actuators of 50 ms)
- Jitter max 150 ms

Measurement Setup

- Hardware
- Lenovo B
- SierraWireless
- Software
- Ping
- Netradar
- Smartphone measurement tool
- Iperf3
- Two setups for easy use and comparison
- Availability of test vehicle
- Easiness in using

Dataset

- Measurement Period
- May 2017 - end of December 2017
- About 5200 km and 78 h of driving
- Ping: 2180 km
- Netradar: 2670 km
- SierraWireless: 354 km

Netradar

SierraWireless

Results - Latency

- Ping
- Median latency of about 55.14 ms
- 96 \% below 250 ms
- Median jitter of about 10 ms
- 5% above 150 ms
- Netradar
- UDP latency
- Median latency of about 55 ms
- 96 \% below 250 ms
- Median jitter of about 2 ms
- 4% above 150 ms

Ping

Netradar

Results - Downlink Throughput

- Netradar
- TCP troughput
- Median of about 17 MBit/s
- 95% above 0.25 MBit/s
- Median variance of 0.15 MBit/s
- SierraWireless
- Iperf3 throughput
- Median of about 28 Mbit/s
- 99 \% above 0.25 Mbit/s
- Median variance of 0.41 MBit/s

Results - Uplink Throughput

- Netradar
- Median of about 12 MBit/s
- 87% above $3 \mathrm{MBit} / \mathrm{s}$
- Median variance about 0.07 MBit/s
- SierraWireless
- Median of about 18 Mbit/s
- 98 \% above 3 Mbit/s
- Median variance about 0.07 MBit/s

Netradar

Results - Identical Routes

- Latency - Ping and Netradar
- Ping: about 57 ms
- Netradar: about 55 ms
\rightarrow Results are roughly comparable with same Hardware
- Throughput - Netradar and SierraWireless

- Downlink: $15 \mathrm{MBit} / \mathrm{s}$ (Netradar) $\leftrightarrow 32 \mathrm{MBit} / \mathrm{s}$ (SierraWireless)

Ping/Netradar
Netradar/SierraWireless

- Uplink: $13 \mathrm{MBit} / \mathrm{s}(N e t r a d a r) \leftrightarrow 20 \mathrm{MBit} / \mathrm{s}$ (SierraWireless)
\rightarrow Most likely attributed to the two antennas

Results - Different Scenarios

- Handover
- Latency and Throughput get worse if changing cellular technology (e.g. LTE \rightarrow 3G)
- Median decrease to 15% of original speed
- Speed
- 0 - $150 \mathrm{~km} / \mathrm{h}$
- No influence on latency or throughput
- Signal-Strength
- Better Signal-Strength, higher throughput
- Latency: No tendency can be seen
- Distance to base station
- No influence can be seen

Results - Whitelisting as possible Approach

- Whitelisting: Teleoperated Driving only in areas
that provide sufficient network performance

- Amount and type of measurements
- Changes in network are likely to occur
- Results reflect client‘s perspective
- Network is treated as Black-Box
- No information on how busy cells were
\rightarrow Nevertheless, results can be used to get a first impression if Teleoperated Driving could work at all with contemporary mobile networks.

Conclusion

- Teleoperated Driving may be feasible with contemporary mobile networks
- Whitelisting can work
- However, Teleoperated Driving can not be used in all situations
- Handover can have negative influence
- Signal strength can influence throughput
- Fluctuation of latency can increase with far vehicles (e.g. more than 250 km away of operator)
- Future work has to deal with limitations, e.g. improve the whitelisting
- If you have further questions: stefan.neumeier@thi.de

