Challenges with Reproducibility

Vaibhav Bajpai TU Munich

SIGCOMM Reproducibility Workshop Los Angeles, USA Introduction Challenges Recommendations

Joint work with

Mirja Kühlewind ETH Zürich, Switzerland

Jörg Ott *TU Munich, Germany*

Jürgen Schönwälder Jacobs University Bremen, Germany

Anna Sperotto University of Twente, Netherlands

Brian Trammell ETH Zürich, Switzerland

Introduction

- ▶ ~15% of MobiHoc simulation papers (2000 2005) were repeatable¹ [2].
- ► ~33% (out of 134 papers) ToIP papers release datasets while only 9% release code [3].
- ► ~32% (out of 600) CS papers published in ACM events exhibit weak repeatability [4].

- We are less strict on reproducibility but tend to accept papers that appear *plausible*.
- This is a cultural issue and changing a culture is hard.
- ► Despite continued advice [5, 6, 7, 8, 9], reproducibility exists as an ongoing problem.

¹ACM provides formal definitions [1] of repeatability, replicability and reproducibility.

Introduction Challenges Recommendations Q/A

Challenges

- ► Authors' perspective -
 - ► Lack of incentive to reproduce research
 - Double-blind review requires obfuscation

- ► Reviewers' perspective -
 - ► Fetching artifacts breaks review anonymity
 - Lack of appreciation for good review work

Challenges

Recommendations

Challenges | Lack of incentive to reproduce research

- ▶ The CS networking discipline is extremely fast-paced -
 - ► Network measurement results become stale within a span of few years.
 - ► Race of putting together findings quickly to be first, tends to hurts reproducibility.
 - ► Ability to properly store, document, and organize data requires time.
 - ► Norm is to get the paper accepted, release artifacts later (after peer-review)
- ► Conferences² do not provide incentives for authors to release artifacts.
- Despite encouragement³, few papers that reproduce results get published.
 - ► Papers with novel ideas tend to excite paper acceptance.

²unlike IMC that bestows best dataset awards

³IMC and TMA CFP solicit submissions that reproduce results

mmendations

Challenges

Challenges | Double-blind review requires obfuscation

- ► Reviewer cannot check for reproducibility of a submission with obfuscated artifacts.
- ► Datasets cannot be understood without the metadata [10] which breaks anonymity.
- ► Time invested in obfuscating paper can be used to prepare artifacts.
- ► Top venues need to setup a role model to initiate a cultural change.

Challenges Recommendations Q/A

Challenges | Fetching artifacts breaks review anonymity

- ▶ Paper submission systems do not allow authors⁴ to upload artifacts with paper.
 - ► Artifacts are made available for review via external resources.
 - Reviewers are expected to fetch artifacts without leaving a trail.

- ► Authors rely on URL shortening services (another level of indirection) for artifacts.
- ► Artifacts made available on external resources may not remain permanently available.
 - Resources become hard to maintain over time.
 - ► Resources prone to garbage collection when authors switch jobs.

⁴SIGCOMM CCR now provides means to make artifacts available during the submission phase

Challenges Recommendations

Challenges | Lack of appreciation for good review work

- ► Limited pool of reviewers that provide good (substantial and constructive) reviews.
- ► Checking for reproducibility increases review expectations further.
- ► Conferences experimenting with automated review assignment systems [11, 12].

- ▶ Publicly releasing reviews⁵ of an accepted paper helps with reproducibility.
 - ► Helps future readership to critically examine an accepted paper.

⁵IMC trailed making reviews publicly available for few years

Challenges Recommendation:

Recommendations

- Discuss reproducibility considerations
- Allow authors to upload artifacts
- ► Ask review questions on reproducibility
- ► Highlight reproducible papers

Challenges

Recommendations

2/A

Recommendations | Discuss reproducibility considerations

- A reproducibility considerations⁶ section:
 - To ensure authors think about reproducibility.
 - Describes where code is available or how to get (or produce) datasets.

- ► Make measurement papers runnable [13, 14] (in the long run):
 - ► Play the process of consuming raw to data to produce results.
 - ► Helps see intermediate results; makes analytical errors visible.
 - Creates an incentives for carefulness.
 - Encourages application of analysis to an independent dataset.

⁶similar to an ethical considerations section

Recommendations | Allow authors to upload artifacts

- ► ACM SIGPLAN conferences employ an Artifacts Evaluation Committee (AEC) [15].
- ► SIGCOMM CCR allows authors to submit artifacts during submission phase.
- ► SIGCOMM CCR relaxes page limits for reproducible papers.
- ► Conferences can split paper and artifact (few weeks after) submission deadlines⁷.
- ► Conferences can encourage authors to demo software to increase plausibility of results.
- ▶ Publishers (ACM *et al.*) should allow authors to upload artifacts with the paper.

⁷This involves a risk of releasing artifacts to anonymous reviewers before paper acceptance.

Challenges Recommendations Q/A Recommendations | Ask review questions on reproducibility

► Accomodate questions in the review form concerning reproducibility:

- ► Are artifacts available? Is advise on how results can be reproduced provided?
- Can the released code be easily run on alternate datasets?

► Is the methodology suitably explained to allow rewriting code?

Introduction Challenges Recommendations

Recommendations | Highlight reproducible papers

- ► Not practical to reject all non-reproducible papers.
- ► Good, working and reproducible papers should get attention they deserve.
 - ▶ Publishers can badge⁸ and highlight reproducible papers.
 - Conferences can bestow best dataset awards.
 - ► AEC can be used to sample and evaluate papers on reproducibility.
 - ► Journals receiving extended conference papers can be strict on reproducibility.
 - ► SIGCOMM CCR can dedicate a column for papers that reproduce [16] results.
 - ► New venues [17] that solicit papers that reproduce research may help.

Introduction Challenges Recommendations

⁸This will require a mechanism to ensure badges do not become fake over time

Challenges with Reproducibility

- ► Despite challenges, state of reproducibility is not dismal, but improving -
 - ▶ Research is being reproduced [18, 19, 20], albeit rarely.
 - ▶ DatCat [21] & CRAWDAD [22] provide index of existing measurement data.

► Recommendations -

- Discuss reproducibility considerations
- Allow authors to upload artifacts
- Ask review questions on reproducibility
- Highlight reproducible papers

...may not be concluding wisdom, but maybe an incentive to reproducibility.

www.vaibhavbajpai.com

bajpaiv@in.tum.de | @bajpaivaibhav

References

- [1] ACM. (2016) Artifact review and badging. [Online]. Available: https://www.acm.org/publications/policies/artifact-review-badging
- [2] S. Kurkowski, T. Camp, and M. Colagrosso, "MANET simulation studies: The incredibles," *Mobile Computing and Communications Review*, vol. 9, no. 4, pp. 50–61, 2005. [Online]. Available: http://doi.acm.org/10.1145/1096166.1096174
- [3] P. Vandewalle, J. Kovacevic, and M. Vetterli, "Reproducible Research in Signal Processing," *IEEE Signal Processing Magazine*, vol. 26, no. 3, pp. 37–47, May 2009.
- [4] C. S. Collberg and T. A. Proebsting, "Repeatability in computer systems research," *Communications of the ACM*, vol. 59, no. 3, pp. 62–69, 2016. [Online]. Available: http://doi.acm.org/10.1145/2812803
- [5] V. Paxson, "Strategies for sound internet measurement," in ACM SIGCOMM Internet Measurement Conference, IMC 2004, Sicily, Italy, October 25-27, 2004, 2004, pp. 263–271. [Online]. Available: http://doi.acm.org/10.1145/1028788.1028824
- [6] B. Krishnamurthy, W. Willinger, P. Gill, and M. F. Arlitt, "A socratic method for validation of measurement-based networking research," *Computer Communications*, vol. 34, no. 1, pp. 43–53, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2010.09.014
- [7] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, "Ten simple rules for reproducible computational research," *PLoS Computational Biology*, vol. 9, no. 10, 2013. [Online]. Available: http://dx.doi.org/10.1371/journal.pcbi.1003285

- [8] V. Bajpai, A. W. Berger, P. Eardley, J. Ott, and J. Schönwälder, "Global measurements: Practice and experience (report on dagstuhl seminar #16012)," *Computer Communication Review*, vol. 46, no. 2, pp. 32–39, 2016. [Online]. Available: http://doi.acm.org/10.1145/2935634.2935641
- [9] P. Eardley, M. Mellia, J. Ott, J. Schönwälder, and H. Schulzrinne, "Global measurement framework (dagstuhl seminar 13472)," *Dagstuhl Reports*, vol. 3, no. 11, 2013. [Online]. Available: http://dx.doi.org/10.4230/DagRep.3.11.144
- [10] V. Bajpai, S. J. Eravuchira, and J. Schönwälder, "Lessons learned from using the RIPE atlas platform for measurement research," *CCR*, vol. 45, no. 3, pp. 35–42, 2015. [Online]. Available: http://doi.acm.org/10.1145/2805789.2805796
- [11] B. Li and Y. T. Hou, "The new automated IEEE INFOCOM review assignment system," *IEEE Network*, vol. 30, no. 5, pp. 18–24, 2016. [Online]. Available: http://dx.doi.org/10.1109/MNET.2016.7579022
- [12] S. Price and P. A. Flach, "Computational support for academic peer review: A perspective from artificial intelligence," *Communications of the ACM*, vol. 60, no. 3, pp. 70–79, 2017. [Online]. Available: http://doi.acm.org/10.1145/2979672
- [13] C. Boettiger, "An introduction to docker for reproducible research," Operating Systems Review, 2015. [Online]. Available: http://doi.acm.org/10.1145/2723872.2723882
- [14] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, "Reproducible network experiments using container-based

ntroduction

Challenges

Recommendations

emulation," in *CoNEXT '12*, 2012. [Online]. Available: http://doi.acm.org/10.1145/2413176.2413206

- [15] S. Krishnamurthi and J. Vitek, "The real software crisis: Repeatability as a core value," *Communications of the ACM*, vol. 58, no. 3, pp. 34–36, 2015. [Online]. Available: http://doi.acm.org/10.1145/2658987
- [16] L. Yan and N. McKeown, "Learning networking by reproducing research results," *Computer Communication Review*, vol. 47, no. 2, pp. 19–26, May 2017. [Online]. Available: http://doi.acm.org/10.1145/3089262.3089266
- [17] P. ONE. (2012) Reproducibility initiative. [Online]. Available: https://validation.scienceexchange.com
- [18] B. Clark, T. Deshane, E. M. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N. Matthews, "Xen and the art of repeated research," in USENIX Annual Technical Conference, 2004, pp. 135–144.
- [19] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft, "Raft refloated: Do we have consensus?" *Operating Systems Review*,

vol. 49, no. 1, pp. 12–21, 2015. [Online]. Available: http://doi.acm.org/10.1145/2723872.2723876

- [20] D. A. Popescu and A. W. Moore, "Reproducing network experiments in a time-controlled emulation environment," in *Traffic Monitoring* and Analysis - 8th International Workshop, TMA 2016, Louvain La Neuve, Belgium, April 07-08, 2016, 2016. [Online]. Available: http://tma.ifbp.org/2016/papers/tma2016-final10.pdf
- [21] C. Shannon, D. Moore, K. Keys, M. Fomenkov, B. Huffaker, and K. Claffy, "The internet measurement data catalog," *Computer Communication Review*, 2005. [Online]. Available: http://doi.acm.org/10.1145/1096536.1096552
- [22] J. Yeo, D. Kotz, and T. Henderson, "CRAWDAD: a community resource for archiving wireless data at dartmouth," *Computer Communication Review*, vol. 36, no. 2, pp. 21–22, 2006. [Online]. Available: http://doi.acm.org/10.1145/1129582.1129588

Introduction Challenges Recommendations