Measuring YouTube from Dual-Stacked Hosts

Passive and Active Measurement (PAM) Conference, New York

Saba Ahsan saba.ahsan@aalto.fi

Jörg Ott jora.ott@aalto.fi

School of Electrical Engineering, Aalto University, Espoo, Finland Vaibhav Bajpai v.bajpai@jacobs-university.de

Jürgen Schönwälder j.schoenwaelder@jacobs-university.de

Computer Networks and Distributed Systems Group, Jacobs University Bremen, Bremen, Germany

March 2015

Motivation Research Question

Research Contributions

Measuring YouTube from Dual-Stacked Hosts

Metrics

Measurement Setup Measurement Setup

Measurement Trials

Speed Tests TCP Connect Times

Iappy Eyeballs

Google Global Caches

nclusion

Appendix

Leone FP7 EU Project: leone-project.eu

- ▶ Large IPv6 broadband rollouts¹ since World IPv6 Launch Day in 2012.
- ▶ Increased global adoption of IPv6 to 6% (as seen by Google as of March 2015).

► Studies show how YouTube contributes heavily to volumes of IPv6 traffic [1]:

Introduction

Motivation

Research Question
Research Contributions

Metrics
Measurement Setup
Measurement Setup
Measurement Trials

Speed Tests
TCP Connect Times
Happy Eyeballs
Throughput and Stall Event
Google Global Caches

Conclusion

¹Comcast, Deutsche Telekom AG, AT&T, Verizon Wireless, T-Mobile USA

Do users experience benefit (or an added penalty) when streaming YouTube videos over IPv6?

Measuring YouTube from Dual-Stacked Hosts

Introduction

Research Question

Research Contribution

Methodology

Metrics
Measurement Setup

Measurement Setu Measurement Trial

Data Analysis
Speed Tests

TCP Connect Time

Iappy Eyeballs hroughput and Stall

oogle Global Caches

onclusion

2. Lower throughput is achieved when streaming YouTube over IPv6.

3. YouTube content caches over IPv6 are largely absent.

To the best of our knowledge, this is the first study to compare YouTube performance over IPv4 and IPv6 from dual-stacked networks.

Research Contributions

Methodology

Measuring YouTube from Dual-Stacked Hosts

Methodology

2. Extracts container formats², available resolutions and media server locations.

3. Locally resolves DNS names of media server locations.

4. Establishes concurrent TCP connections for audio and video streams.

► Measures TCP connect times by recording connect(...) call completion time.

▶ DNS resolution time is not accounted.

5. Fetches audio and video streams over concurrent HTTP sessions.

Ensures temporal synchronization between audio and video streams.

Measures throughput achieved over the single TCP connection for each stream.

6. Extracts frame timestamps from container to mimic a playout.

► A 2 second prebuffering is applied before starting playout timer.

Measures stall duration whenever a frame fails to arrive before its playout time.

A stall triggers 1 second of rebuffering before resuming playout timer.

Motivation

Research Question

Research Contribution

ethodolog

Metrics

feasurement Setup

ata Analysis

TCP Connect Time

Throughput and Sta

Google Global Ca

Conclusion

Introduction

²The YouTube test supports three container formats: MP4, WebM and FLV

- ▶ Measures achievable throughput over the line.
- ▶ Uses 3 simultaneous TCP connections to fetch 1 GB, non-zero, binary file.
- ▶ HTTP GET request is made to the nearest (based on latency) M-Lab server.
- ▶ Detailed in the SamKnows test suite [3] description.

- ▶ We modified the test to also enable measurements over IPv6.
- ▶ We use these line rates to baseline our YouTube throughput measurements.

Introduction

Research Question
Research Contributions

Methodology

Metrics

Measurement Setup
Measurement Trial

Speed Tests
TCP Connect Times
Happy Eyeballs

Conclusion

Conclusion

Measurement Setup

▶ We use the YouTube v3 API³ to prepare a list of globally popular videos where:

- 1 Video duration > 60s
- 2. Video is available in Full HD format.
- 3. Video has no regional restrictions.

- ▶ List is refreshed every 12h on the SamKnows backend.
- Each probe pulls this list on a daily basis.

³https://developers.google.com/youtube/v3/docs/videos/list

- ▶ YouTube provides a list of available resolutions (and their required bitrates).
- ► The YouTube test currently does not support DASH [4].
- ▶ We use speed test results to limit maximum bitrate.
- ▶ We also support 2 operation modes:
 - 1. Non-adaptive mode.
 - ► Test downloads the same video resolution despite stalls.
 - ▶ Although, does not mimic the behavior of YouTube players.
 - ▶ However, still useful to compare IPv4 vs IPv6 performance in identical conditions.
 - 2. Step-down mode.
 - Test steps down to a lower video resolution on a stall.
 - Portrays a more user-oriented behaviour.

Introduction

Motivation
Research Question

Aethodol _{Metrics}

Measurement Setup

Measurement Trial

Oata Analysis
Speed Tests

Happy Eyeballs

Throughput and Stal

nclusion

- ➤ YouTube test runs every hour (once for IPv4 and subsequently for IPv6).
- ► Speed test runs every 6 hours (once for IPv4 and subsequently for IPv6).

Measuring YouTube from Dual-Stacked Hosts

ntroduction

Motivation Research Question

Metrics Measurement Setu

Measurement Setup Measurement Trials

Speed Tests
TCP Connect Times
Happy Eyeballs

oogle Global Cach

Conclusion

$Methodology \mid {\scriptstyle Measurement \ Trials}$

#	LOCATION	PROVIDER	TYPE	
#01 #02 #03 #04 #05 #06 #07 #08	BREMEN BREMEN STOCKHOLM FUKUOKA MADRID ALLEUR BREMEN SHIZUOKA	KABELDEUTSCHLAND DEUTSCHE TELEKOM SITAB ASAHI NET JAZZ TELECOM EDPNET DEUTSCHE TELEKOM BIGLOBE NEC	RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL	
#09	CERN	CERN	RESEARCH	
#10	BREMEN	DFN	NREN	
#11	TIMISOARA	ROEDUNET	NREN	
#12	LOUVAIN	BELNET	NREN	
#13	BREMEN	DFN	NREN	
#14	HELSINKI	FUNET	NREN	
#15	LONDON	BSKYB-BROADBAND	LAB	
#16	TORINO	TELECOM ITALIA	LAB	
#17	MADRID	BT ESPANA	LAB	
#18	IPSWICH	BT UK	LAB	
#19	NIIGATA	NDAC	IXP	
#20	BRAUNSCHWEIG	GAERTNER DATENSYSTEME	BUSINESS	
#21	OLTEN	INIT SEVEN	BUSINESS	

Measuring YouTube from Dual-Stacked Hosts

troduction

Research Question

Metrics

Measurement Setu

Measurement Trials

Speed Tests

appy Eveballs

Throughput and Stall

onclusion

Conclusion

Measuring YouTube from Dual-Stacked Hosts

Data Analysis

Data Analysis⁴

⁴The results are derived from measurements conducted for 20 days in September 2014.

Speed Tests

ntroduction

Motivation Research Question Research Contribution

Methodology Metrics Measurement Setup Measurement Setup Measurement Trials

Data Analysis

Speed Tests
TCP Connect Times
Happy Eveballs

Happy Eyeballs Throughput and Stall Event Google Global Caches

Conclusion

Data Analysis | TCP Connect Times

Measuring YouTube from Dual-Stacked Hosts

Introduction

Motivation Research Question

Metrics
Measurement Setu

Measurement Setup Measurement Trials

Data Analysis

TCP Connect Times

Happy Eyeballs
Throughput and Stall Ever
Google Global Caches

Conclusion

Data Analysis | Happy Eyeballs

IPV6 PREFERENCE

	1770 77	IPVO PREFERENCE		
	VIDEO	AUDIO		
#01	100.0%	100.0%		
#02	100.0%	100.0%		
#03	99.75%	99.75%		
#04	100.0%	100.0%		
#05	92.79%	92.79%		
#06	100.0%	100.0%		
#07	100.0%	100.0%		
#08	00.00%	00.00%		
#09	100.0%	100.0%		
#10	100.0%	100.0%		
#11	100.0%	100.0%		
#12	100.0%	100.0%		
#13	100.0%	100.0%		
#14	100.0%	100.0%		
#15	100.0%	100.0%		
#16	99.39%	98.94%		
#17	98.01%	98.26%		
#18	100.0%	100.0%		
#19	99.52%	96.85%		
#20	100.0%	100.0%		
#21	100.0%	100.0%		

Measuring YouTube from Dual-Stacked Hosts

Introduction

Motivation

Research Question
Research Contribution

Methodo Metrics

Measurement Setup

peed Tests CP Connect Tir

Happy Eyeballs

Google Global Cache

Conclusion

○ GOOGLE (AS15169) * SEABONE (AS6762) □ YOUTUBE (AS36040)

Throughput and Stall Events

Hour

Data Analysis | Google Global Caches

CATEGORY	IPV4	n(PROBES)	IPV6	n(PROBES)
	COMHEM (AS39651)	01	-	_
	ASAHI (AS4685)	01	-	-
	JAZZNET (AS12715)	01	-	-
	EDPNET (AS9031)	01	-	-
	DTAG (AS3320)	02	DTAG (AS3320)	02
CONTENT	BIGLOBE (AS2518)	01	-	-
CACHES	ROEDUNET (AS2614)	01	ROEDUNET (AS2614)	01
	NORDUNET (AS2603)	01	NORDUNET (AS2603)	01
	BSKYB (AS5607)	01	BSKYB (AS5607)	01
	SEABONE (AS6762)	01	-	-
	QSC (AS20676)	01	QSC (AS20676)	01
	NG (AS48161)	01	-	
	GOOGLE (AS15169)	20	GOOGLE (AS15169)	19
CDN	YOUTUBE (AS43515)	03	-	-
	YOUTUBE (AS36040)	02	-	-
	LEVEL3 (AS3356)	01	-	-
IXP	-	-	INTERLAN (AS39107)	01

otivation
seearch Question
search Question
seearch Contributions
ethodology
etrics
seasurement Setup
seasurement Trials
atta Analysis
seed Tests

Google Global Caches
Conclusion

501101031011

Conclusion

- 1. TCP connect times to YouTube makes Happy Eyeballs prefer IPv6.
- 2. Lower throughput is achieved when streaming YouTube over IPv6.
- 3. YouTube content caches over IPv6 are largely absent.

The entire dataset is publicly released: http://www.netlab.tkk.fi/tutkimus/rtc/PAM2015

Measuring YouTube from Dual-Stacked Hosts

Introduction

Motivation

Research Question

Research Contributions

Metrics
Measurement Setup
Measurement Setup
Measurement Trials

Speed Tests
TCP Connect Times
Happy Eyeballs
Throughput and Stall Events

Conclusion

Measuring YouTube from Dual-Stacked Hosts

miroduction

Research Question

.

Metrics

Appendix

Measurement Setu

Measurement Set

Measurement Iria

Data Analysis

Speed Tests

Happy Eveballs

aroughput and Stall Eve

ogle Global Caches

Conclusion

MA	SUCCESS	SS RATE	STALL	STALL RATE	SPEEDTES	SPEEDTEST (Mbps)	
	IPV4	IPV6	IPV4	IPV6	IPV4	IPV6	
#01	100%	55%	0%	0%	92.56	72.35	-
#02	100%	100%	7%	1%	11.55	11.37	-
#03	100%	60%	0%	0%	61.82	57.99	IPV4
#04	100%	92%	0%	4%	10.68	7.55	IPV4
#05	100%	100%	29%	39%	1.49	1.47	IPv4
#06	100%	100%	0%	1%	27.83	6.16	IPv4
#07	100%	100%	0%	2%	44.24	43.45	IPv4
#08	100%	0%	0%	0%	13.14	9.80	IPv4
#09	100%	100%	0%	0%	83.20	25.06	-
#10	100%	55%	0%	0%	92.29	88.54	-
#11	100%	100%	0%	0%	37.87	39.10	BOTH
#12	100%	91%	0%	0%	92.15	77.40	-
#13	100%	61%	0%	0%	217.99	170.46	-
#14	100%	99%	0%	0%	87.09	86.34	вотн
#15	96%	100%	0%	0%	10.99	10.82	ВОТН
#16	100%	100%	5%	30%	4.35	4.31	IPV4
#17	100%	100%	1%	57%	9.17	3.49	-
#18	100%	100%	0%	100%	20.80	0.29	-
#19	100%	99%	7%	5%	11.83	24.14	-
#20	100%	100%	0%	0%	93.37	91.83	ВОТН
#21	100%	100%	0%	0%	88.08	64.04	_

roduction

Motivation
Research Question
Research Contributions

etrics easurement Setu

Measurement Setup Measurement Trials

ata Analysis

TCP Connect Times

Happy Eyeballs

ogle Global Caches

Conclusion

► YouTube Characterization:

- ► Gill *et al.* [5] (2007) study YouTube workload patterns in a campus.
- ► Cha et al. [6] (2007) study YouTube content popularity.

▶ Passive Measurements:

- ▶ Adhikari *et al.* [7] (2010) use flow data to study YouTube from a tier-1 ISP.
- ► Finamore *et al.* [8] (2011) compare YouTube for mobile & PC devices.
- ▶ Dimopoulos *et al.* [9] (2013) study YouTube video sessions.

Active Measurements:

- ▶ Juluri *et al.* [10] (2011) show Pytomo, a python tool that models a YouTube client.
- ▶ Adhikari *et al.* [11] (2012) use PlanetLab to crawl YouTube video ID space.
- ▶ Juluri *et al.* [12] (2013) use Pytomo to measure YouTube from 3 ISPs.
- ▶ Nam *et al.* [13] (2014) show YouSlow, browser plugin to detect live buffer stalls.

Introduction

Motivation

Research Question

Research Contribution

Metrics
Measurement Setup
Measurement Trials

Speed Tests
TCP Connect Times
Happy Eyeballs
Throughput and Stall Ever
Google Global Caches

onclusion

- [2] D. Wing and A. Yourtchenko, "Happy Eyeballs: Success with Dual-Stack Hosts," RFC 6555 (Proposed Standard), Internet Engineering Task Force, Apr. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6555.txt
- [3] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè, "Broadband internet performance: A view from the gateway," ser. SIGCOMM '11. ACM, 2011.
- [4] T. Stockhammer, "Dynamic adaptive streaming over http -: Standards and design principles," in *Proceedings of the Second Annual ACM Conference on Multimedia Systems*, ser. MMSys '11. New York, NY, USA: ACM, 2011, pp. 133–144. [Online]. Available: http://dx.doi.org/10.1145/1943552.1943572
- [5] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, "Youtube Traffic Characterization: A View from the Edge," in Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, ser. IMC '07. New York, NY, USA: ACM, 2007, pp. 15–28. [Online]. Available: http://dx.doi.org/10.1145/1298306.1298310
- [6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, "I Tube, You Tube, Everybody Tubes: Analyzing the World's Largest User Generated Content Video System," in *Proceedings of the 7th ACM SIGCOMM Conference* on Internet Measurement, ser. IMC '07. New York, NY, USA: ACM, 2007, pp. 1–14. [Online]. Available: http://dx.doi.org/10.1145/1298306.1298309

introduction

Research Question
Research Contribution

fetrics

feasurement Setup feasurement Setup feasurement Trials

Deed Tests

CP Connect Times

appy Eyeballs

nclusion

- [7] V. K. Adhikari, S. Jain, and Z.-L. Zhang, "YouTube Traffic Dynamics and Its Interplay with a Tier-1 ISP: An ISP Perspective," in *Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement*, ser. IMC '10. New York, NY, USA: ACM, 2010. [Online]. Available: http://dx.doi.org/10.1145/1879141.1879197
- [8] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao, "YouTube Everywhere: Impact of Device and Infrastructure Synergies on User Experience," in *Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference*, ser. IMC '11. New York, NY, USA: ACM, 2011, pp. 345–360. [Online]. Available: http://dx.doi.org/10.1145/2068816.2068849
- [9] G. Dimopoulos, P. Barlet-Ros, and J. Sanjuas-Cuxart, "Analysis of youtube user experience from passive measurements," in *Network and Service Management (CNSM), 2013 9th International Conference on*, Oct 2013, pp. 260–267. [Online]. Available: http://dx.doi.org/10.1109/CNSM.2013.6727845
- [10] P. Juluri, L. Plissonneau, and D. Medhi, "Pytomo: A tool for analyzing playback quality of youtube videos," in *Teletraffic Congress (ITC)*, 2011, Sept 2011.
- [11] V. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, "Vivisecting youtube: An active measurement study," in INFOCOM, 2012 Proceedings IEEE, March 2012. [Online]. Available: http://dx.doi.org/10.1109/INFCOM.2012.6195644
- [12] P. Juluri, L. Plissonneau, Y. Zeng, and D. Medhi, "Viewing youtube from a metropolitan area: What do users accessing from residential isps experience?" in *IFIP/IEEE International Symposium on Integrated Network Management (IM)*,, May 2013.

itroduction

Research Question

lethodolog

feasurement Setup feasurement Setup

deasurement Setup

CP Connect Times

opy Eyeballs oughput and Stall

gie Giovai Caein

Conclusion

Appendix | References III

[13] H. Nam, K.-H. Kim, D. Calin, and H. Schulzrinne, "Youslow: a performance analysis tool for adaptive bitrate video streaming," in *Proceedings of the 2014 ACM conference on SIGCOMM*. ACM, 2014, pp. 111–112.

Measuring YouTube from Dual-Stacked Hosts

Introduction

Research Question
Research Contribution

Methodology

Measurement Setup

Measurement Setup

Measurement Trials

Data Analysis

CP Connect Times
appy Eyeballs

oogie Giobai Cacii

00110101011